CancerAtHomeV2 / PROJECT_SUMMARY.md
Mentors4EDU's picture
Upload 33 files
7a92197 verified
# Cancer@Home v2 - Project Summary
## ๐ŸŽฏ Project Overview
Cancer@Home v2 is a comprehensive distributed computing platform for cancer genomics research that successfully integrates:
1. **Distributed Computing (BOINC)** - Submit and manage computationally intensive cancer research tasks
2. **Cancer Data Portal (GDC)** - Access and download cancer genomics datasets from TCGA and TARGET
3. **Graph Database (Neo4j)** - Model complex relationships between genes, mutations, patients, and cancer types
4. **Bioinformatics Pipeline** - Process FASTQ files, run BLAST searches, and call genetic variants
5. **Interactive Dashboard** - Web-based GUI with real-time visualizations and data exploration
## ๐Ÿ“ Project Structure
```
CancerAtHome2/
โ”œโ”€โ”€ backend/
โ”‚ โ”œโ”€โ”€ api/
โ”‚ โ”‚ โ””โ”€โ”€ main.py # FastAPI application with REST & GraphQL
โ”‚ โ”œโ”€โ”€ boinc/
โ”‚ โ”‚ โ””โ”€โ”€ client.py # BOINC distributed computing client
โ”‚ โ”œโ”€โ”€ gdc/
โ”‚ โ”‚ โ””โ”€โ”€ client.py # GDC Portal API integration
โ”‚ โ”œโ”€โ”€ neo4j/
โ”‚ โ”‚ โ”œโ”€โ”€ db_manager.py # Neo4j database operations
โ”‚ โ”‚ โ”œโ”€โ”€ graphql_schema.py # GraphQL schema definitions
โ”‚ โ”‚ โ””โ”€โ”€ data_importer.py # Sample data initialization
โ”‚ โ””โ”€โ”€ pipeline/
โ”‚ โ”œโ”€โ”€ fastq_processor.py # FASTQ quality control
โ”‚ โ”œโ”€โ”€ blast_runner.py # BLAST sequence alignment
โ”‚ โ””โ”€โ”€ variant_caller.py # Genetic variant identification
โ”œโ”€โ”€ frontend/
โ”‚ โ””โ”€โ”€ index.html # Interactive web dashboard
โ”œโ”€โ”€ config.yml # Configuration file
โ”œโ”€โ”€ docker-compose.yml # Neo4j container setup
โ”œโ”€โ”€ requirements.txt # Python dependencies
โ”œโ”€โ”€ run.py # Main application launcher
โ”œโ”€โ”€ setup.ps1 # Windows setup script
โ”œโ”€โ”€ setup.sh # Linux/Mac setup script
โ”œโ”€โ”€ README.md # Comprehensive documentation
โ”œโ”€โ”€ QUICKSTART.md # Quick start guide
โ”œโ”€โ”€ USER_GUIDE.md # Detailed user guide
โ”œโ”€โ”€ GRAPHQL_EXAMPLES.md # GraphQL query examples
โ””โ”€โ”€ LICENSE # MIT License
```
## ๐Ÿš€ Key Features Implemented
### 1. Web Dashboard
- **Modern UI**: Clean, gradient-based design with responsive layout
- **5 Main Tabs**: Dashboard, Neo4j Visualization, BOINC Tasks, GDC Data, Pipeline
- **Real-time Statistics**: Live data from Neo4j showing genes, mutations, patients
- **Interactive Charts**: Chart.js visualizations for mutation distributions
- **D3.js Graph**: Interactive network visualization of cancer genomics relationships
### 2. Neo4j Graph Database
- **Node Types**: Gene, Mutation, Patient, CancerType
- **Relationships**:
- Gene โ† AFFECTS โ† Mutation
- Patient โ†’ HAS_MUTATION โ†’ Mutation
- Patient โ†’ DIAGNOSED_WITH โ†’ CancerType
- **Sample Data**: Pre-loaded with 7 genes, 5 mutations, 5 patients, 4 cancer types
- **Optimized**: Constraints and indexes for fast queries
### 3. GraphQL API
- **Flexible Queries**: Get genes, mutations, patients, cancer types
- **Filtering**: Query by gene symbol, chromosome, project ID, cancer type
- **Aggregations**: Mutation frequency, cancer statistics
- **Playground**: Interactive GraphQL explorer at /graphql
### 4. REST API Endpoints
- `/api/health` - System health check
- `/api/neo4j/summary` - Database statistics
- `/api/neo4j/genes/{symbol}` - Gene information
- `/api/boinc/tasks` - List BOINC tasks
- `/api/boinc/submit` - Submit new task
- `/api/boinc/statistics` - Task statistics
- `/api/gdc/projects` - Available cancer projects
- `/api/gdc/files/{project_id}` - Search GDC files
- `/api/gdc/download` - Download GDC data
- `/api/pipeline/*` - Bioinformatics pipeline endpoints
### 5. BOINC Integration
- **Task Submission**: Support for variant calling, BLAST, alignment tasks
- **Status Tracking**: Monitor pending, running, completed, failed tasks
- **Statistics**: Total tasks, completion rates, average times
- **Task Manager**: High-level interface for common workflows
### 6. GDC Data Integration
- **Search API**: Query files by project, data type, experimental strategy
- **Download**: Retrieve cancer genomics datasets
- **Projects Supported**: TCGA-BRCA, TCGA-LUAD, TCGA-COAD, TCGA-GBM, TARGET-AML
- **Parsers**: MAF, VCF, and clinical data parsing utilities
### 7. Bioinformatics Pipeline
- **FASTQ Processing**:
- Quality filtering
- Adapter trimming
- Statistics calculation
- Quality control reports
- **BLAST Integration**:
- BLASTN and BLASTP support
- XML output parsing
- Hit filtering by identity/e-value
- **Variant Calling**:
- VCF generation
- Quality filtering
- Variant annotation
- Cancer variant identification
- Tumor mutation burden calculation
## ๐Ÿ› ๏ธ Technology Stack
- **Backend**: FastAPI (Python 3.8+)
- **Database**: Neo4j 5.13 (Graph Database)
- **API**: GraphQL (Strawberry), REST
- **Frontend**: HTML5, CSS3, JavaScript
- **Visualization**: D3.js, Chart.js
- **Bioinformatics**: Biopython
- **Data Source**: GDC Portal API
- **Containerization**: Docker, Docker Compose
- **Distributed Computing**: BOINC framework
## ๐Ÿ“Š Sample Data Included
### Genes (7)
- TP53 (Tumor protein p53)
- BRAF (B-Raf proto-oncogene)
- BRCA1, BRCA2 (Breast cancer genes)
- PIK3CA, KRAS, EGFR (Oncogenes)
### Mutations (5)
- Various missense mutations in cancer-associated genes
- Includes position, reference/alternate alleles, quality scores
### Patients (5)
- Representative cases from TCGA-BRCA, TCGA-LUAD, TCGA-COAD
- Demographic data, vital status
### Cancer Types (4)
- Breast Cancer (BRCA)
- Lung Adenocarcinoma (LUAD)
- Colon Adenocarcinoma (COAD)
- Glioblastoma (GBM)
## ๐ŸŽจ Design Principles
1. **Simplicity**: One-command setup, intuitive interface
2. **Speed**: Fast to install and get started (< 5 minutes)
3. **Modularity**: Clean separation of concerns
4. **Extensibility**: Easy to add new data sources and analyses
5. **Visual**: Rich visualizations for data exploration
6. **Professional**: Production-quality code with error handling
## ๐Ÿ”ง Configuration Options
All configurable via `config.yml`:
- Neo4j connection settings
- GDC API parameters
- BOINC server configuration
- Pipeline quality thresholds
- Output directories
- Logging levels
## ๐Ÿ“– Documentation Provided
1. **README.md** - Complete project overview and installation
2. **QUICKSTART.md** - Fast setup and first steps
3. **USER_GUIDE.md** - Comprehensive usage documentation
4. **GRAPHQL_EXAMPLES.md** - GraphQL query examples
5. **Inline Code Comments** - Well-documented Python modules
6. **API Documentation** - Auto-generated Swagger UI at /docs
## ๐ŸŒŸ Unique Features
1. **All-in-One Solution**: Complete stack from data acquisition to visualization
2. **Graph-Based**: Leverages Neo4j's power for complex relationship queries
3. **Real-Time**: Live dashboard updates and task monitoring
4. **Research-Ready**: Built for actual cancer genomics research workflows
5. **Extensible**: Easy to integrate additional data sources and tools
6. **Educational**: Great for learning cancer genomics and graph databases
## ๐Ÿšฆ Getting Started (Quick)
```bash
# Windows
.\setup.ps1
python run.py
# Linux/Mac
./setup.sh
python run.py
# Open browser
http://localhost:5000
```
## ๐ŸŽฏ Use Cases
1. **Research**: Analyze cancer genomics data with distributed computing
2. **Education**: Learn about cancer genetics and bioinformatics
3. **Visualization**: Explore gene-mutation-patient relationships
4. **Data Integration**: Combine multiple cancer data sources
5. **Pipeline Development**: Test bioinformatics workflows
## ๐Ÿ”ฎ Future Enhancements (Optional)
- Machine learning for mutation prediction
- Multi-omics data integration (RNA-seq, proteomics)
- Survival analysis and clinical outcomes
- Drug response prediction
- Advanced graph algorithms (PageRank, community detection)
- Real-time collaboration features
- Mobile responsive design
- Export/report generation
## ๐Ÿ“ License
MIT License - Free for academic and commercial use
## ๐Ÿ™ Acknowledgments
Inspired by:
- Cancer@Home v1 (HeroX DCx Challenge)
- Andrew Kamal's Neo4j Cancer Visualization
- GDC Portal and TCGA Project
- BOINC Distributed Computing Framework
---
**Cancer@Home v2** successfully combines modern web technologies, graph databases, distributed computing, and bioinformatics tools into a cohesive platform that is both powerful and easy to use. The system is production-ready, well-documented, and designed for real-world cancer genomics research.