grider-transwithai's picture
Update README.md
e1bfbd7 verified
---
license: apache-2.0
pipeline_tag: audio-text-to-text
library_name: transformers
tags:
- audio-reasoning
- chain-of-thought
- multi-modal
- step-audio-r1
base_model:
- stepfun-ai/Step-Audio-R1
---
## Step-Audio-R1-NVFP4A16 (Quantized)
This is a **quantized version** of Step-Audio-R1 using NVFP4A16 quantization via [LLM Compressor](https://github.com/vllm-project/llm-compressor).
### Quantization Details
- **Scheme**: NVFP4A16 (FP4 weights with FP16 activations)
- **Target layers**: All Linear layers (except `encoder`, `adapter`, `lm_head`)
- **Group size**: 16
- **Method**: Post-Training Quantization (PTQ)
### Quantization Code
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
from llmcompressor import oneshot
from llmcompressor.modifiers.quantization import QuantizationModifier
from llmcompressor.utils import dispatch_for_generation
MODEL_ID = "stepfun-ai/Step-Audio-R1"
# Load model
model = AutoModelForCausalLM.from_pretrained(MODEL_ID, torch_dtype="auto")
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
# Configure the quantization algorithm and scheme
# Quantize weights to FP4 with per group 16 via PTQ
recipe = QuantizationModifier(targets="Linear", scheme="NVFP4A16", ignore=["lm_head", "re:encoder.*", "re:adapter.*"])
# Apply quantization
oneshot(model=model, recipe=recipe)
# Save to disk in compressed-tensors format
SAVE_DIR = "Step-Audio-R1-NVFP4A16"
model.save_pretrained(SAVE_DIR, save_compressed=True)
tokenizer.save_pretrained(SAVE_DIR)
```
## Step-Audio-R1
✨ [Demo Page](https://stepaudiollm.github.io/step-audio-r1/) 
| 🎮 [Playground](https://huggingface.co/spaces/stepfun-ai/Step-Audio-R1) 
| 🌟 [GitHub](https://github.com/stepfun-ai/Step-Audio-R1) 
| 📑 [Paper](https://arxiv.org/abs/2511.15848) 
Step-Audio-R1 is the **first audio language model to successfully unlock Chain-of-Thought (CoT) reasoning**.
It decisively solves the "inverted scaling" problem that plagues existing models, where performance degrades
with longer reasoning. Step-Audio-R1 is the first model to demonstrate that for audio, like text and vision,
allocating more compute at test-time predictably improves performance.
We found the root cause of this anomaly: models were engaging in **textual surrogate reasoning**
(analyzing transcripts, not audio) due to a modality mismatch. To solve this, we introduce
**Modality-Grounded Reasoning Distillation (MGRD)**, an iterative training framework that shifts the model's
reasoning from textual abstractions to acoustic properties.
This new approach allows us to create **Step-Audio-R1**, which:
- Is the **first audio reasoning model** that successfully benefits from test-time compute scaling.
- Surpasses **Gemini 2.5 Pro** and is comparable to **Gemini 3** across major audio reasoning tasks.
- Transforms extended deliberation from a liability into a **powerful asset** for audio intelligence.
## Features
- **Chain-of-Thought (CoT) Reasoning**
- First audio language model to successfully unlock Chain-of-Thought reasoning capabilities.
- Generates audio-relevant reasoning chains that genuinely ground themselves in acoustic features.
- **Modality-Grounded Reasoning Distillation (MGRD)**
- Innovative iterative training framework that shifts reasoning from textual abstractions to acoustic properties.
- Solves the modality mismatch problem that caused textual surrogate reasoning in previous models.
- **Superior Performance**
- Surpasses **Gemini 2.5 Pro** across comprehensive audio understanding and reasoning benchmarks.
- Comparable to **Gemini 3** across major audio reasoning tasks.
- Surpasses **Qwen3** in textual reasoning.
- Covers speech, environmental sounds, and music domains.
For more examples, see [demo page](https://stepaudiollm.github.io/step-audio-r1/).
## Model Usage
### 📜 Requirements
- **GPU**: NVIDIA GPUs with CUDA support (tested on 4×L40S/H100/H800/H20).
- **Operating System**: Linux.
- **Python**: >= 3.10.0.
### ⬇️ Download Model
First, you need to download the Step-Audio-R1 model weights.
**Method A · Git LFS**
```bash
git lfs install
git clone https://huggingface.co/stepfun-ai/Step-Audio-R1
```
**Method B · Hugging Face CLI**
```bash
hf download stepfun-ai/Step-Audio-R1 --local-dir ./Step-Audio-R1
```
### 🚀 Deployment and Execution
We provide two ways to serve the model: Docker (recommended) or compiling the customized vLLM backend.
#### 🐳 Method 1 · Run with Docker (Recommended)
A customized vLLM image is required.
1. **Pull the image**:
```bash
docker pull stepfun2025/vllm:step-audio-2-v20250909
```
2. **Start the service**:
Assuming the model is downloaded in the `Step-Audio-R1` folder in the current directory.
```bash
docker run --rm -ti --gpus all \
-v $(pwd)/Step-Audio-R1:/Step-Audio-R1 \
-p 9999:9999 \
stepfun2025/vllm:step-audio-2-v20250909 \
-- vllm serve /Step-Audio-R1 \
--served-model-name Step-Audio-R1 \
--port 9999 \
--max-model-len 16384 \
--max-num-seqs 32 \
--tensor-parallel-size 4 \
--chat-template '{%- macro render_content(content) -%}{%- if content is string -%}{{- content.replace("<audio_patch>\n", "<audio_patch>") -}}{%- elif content is mapping -%}{{- content['"'"'value'"'"'] if '"'"'value'"'"' in content else content['"'"'text'"'"'] -}}{%- elif content is iterable -%}{%- for item in content -%}{%- if item.type == '"'"'text'"'"' -%}{{- item['"'"'value'"'"'] if '"'"'value'"'"' in item else item['"'"'text'"'"'] -}}{%- elif item.type == '"'"'audio'"'"' -%}<audio_patch>{%- endif -%}{%- endfor -%}{%- endif -%}{%- endmacro -%}{%- if tools -%}{{- '"'"'<|BOT|>system\n'"'"' -}}{%- if messages[0]['"'"'role'"'"'] == '"'"'system'"'"' -%}{{- render_content(messages[0]['"'"'content'"'"']) + '"'"'<|EOT|>'"'"' -}}{%- endif -%}{{- '"'"'<|BOT|>tool_json_schemas\n'"'"' + tools|tojson + '"'"'<|EOT|>'"'"' -}}{%- else -%}{%- if messages[0]['"'"'role'"'"'] == '"'"'system'"'"' -%}{{- '"'"'<|BOT|>system\n'"'"' + render_content(messages[0]['"'"'content'"'"']) + '"'"'<|EOT|>'"'"' -}}{%- endif -%}{%- endif -%}{%- for message in messages -%}{%- if message["role"] == "user" -%}{{- '"'"'<|BOT|>human\n'"'"' + render_content(message["content"]) + '"'"'<|EOT|>'"'"' -}}{%- elif message["role"] == "assistant" -%}{{- '"'"'<|BOT|>assistant\n'"'"' + (render_content(message["content"]) if message["content"] else '"'"''"'"') -}}{%- set is_last_assistant = true -%}{%- for m in messages[loop.index:] -%}{%- if m["role"] == "assistant" -%}{%- set is_last_assistant = false -%}{%- endif -%}{%- endfor -%}{%- if not is_last_assistant -%}{{- '"'"'<|EOT|>'"'"' -}}{%- endif -%}{%- elif message["role"] == "function_output" -%}{%- else -%}{%- if not (loop.first and message["role"] == "system") -%}{{- '"'"'<|BOT|>'"'"' + message["role"] + '"'"'\n'"'"' + render_content(message["content"]) + '"'"'<|EOT|>'"'"' -}}{%- endif -%}{%- endif -%}{%- endfor -%}{%- if add_generation_prompt -%}{{- '"'"'<|BOT|>assistant\n<think>\n'"'"' -}}{%- endif -%}' \
--enable-log-requests \
--interleave-mm-strings \
--trust-remote-code
```
After the service starts, it will listen on `localhost:9999`.
#### 🐳 Method 2 · Run from Source (Compile vLLM)
Step-Audio-R1 requires a customized vLLM backend.
1. **Download Source Code**:
```bash
git clone https://github.com/stepfun-ai/vllm.git
cd vllm
```
2. **Prepare Environment**:
```bash
python3 -m venv .venv
source .venv/bin/activate
```
3. **Install and Compile**:
vLLM contains both C++ and Python code. We mainly modified the Python code, so the C++ part can use the pre-compiled version to speed up the process.
```bash
# Use pre-compiled C++ extensions (Recommended)
VLLM_USE_PRECOMPILED=1 pip install -e .
```
4. **Switch Branch**:
After compilation, switch to the branch that supports Step-Audio.
```bash
git checkout step-audio-2-mini
```
5. **Start the Service**:
```bash
# Ensure you are in the vllm directory and the virtual environment is activated
source .venv/bin/activate
python3 -m vllm.entrypoints.openai.api_server \
--model ../Step-Audio-R1 \
--served-model-name Step-Audio-R1 \
--port 9999 \
--host 0.0.0.0 \
--max-model-len 65536 \
--max-num-seqs 128 \
--tensor-parallel-size 4 \
--gpu-memory-utilization 0.85 \
--trust-remote-code \
--enable-log-requests \
--interleave-mm-strings \
--chat-template '{%- macro render_content(content) -%}{%- if content is string -%}{{- content.replace("<audio_patch>\n", "<audio_patch>") -}}{%- elif content is mapping -%}{{- content['"'"'value'"'"'] if '"'"'value'"'"' in content else content['"'"'text'"'"'] -}}{%- elif content is iterable -%}{%- for item in content -%}{%- if item.type == '"'"'text'"'"' -%}{{- item['"'"'value'"'"'] if '"'"'value'"'"' in item else item['"'"'text'"'"'] -}}{%- elif item.type == '"'"'audio'"'"' -%}<audio_patch>{%- endif -%}{%- endfor -%}{%- endif -%}{%- endmacro -%}{%- if tools -%}{{- '"'"'<|BOT|>system\n'"'"' -}}{%- if messages[0]['"'"'role'"'"'] == '"'"'system'"'"' -%}{{- render_content(messages[0]['"'"'content'"'"']) + '"'"'<|EOT|>'"'"' -}}{%- endif -%}{{- '"'"'<|BOT|>tool_json_schemas\n'"'"' + tools|tojson + '"'"'<|EOT|>'"'"' -}}{%- else -%}{%- if messages[0]['"'"'role'"'"'] == '"'"'system'"'"' -%}{{- '"'"'<|BOT|>system\n'"'"' + render_content(messages[0]['"'"'content'"'"']) + '"'"'<|EOT|>'"'"' -}}{%- endif -%}{%- endif -%}{%- for message in messages -%}{%- if message["role"] == "user" -%}{{- '"'"'<|BOT|>human\n'"'"' + render_content(message["content"]) + '"'"'<|EOT|>'"'"' -}}{%- elif message["role"] == "assistant" -%}{{- '"'"'<|BOT|>assistant\n'"'"' + (render_content(message["content"]) if message["content"] else '"'"''"'"') -}}{%- set is_last_assistant = true -%}{%- for m in messages[loop.index:] -%}{%- if m["role"] == "assistant" -%}{%- set is_last_assistant = false -%}{%- endif -%}{%- endfor -%}{%- if not is_last_assistant -%}{{- '"'"'<|EOT|>'"'"' -}}{%- endif -%}{%- elif message["role"] == "function_output" -%}{%- else -%}{%- if not (loop.first and message["role"] == "system") -%}{{- '"'"'<|BOT|>'"'"' + message["role"] + '"'"'\n'"'"' + render_content(message["content"]) + '"'"'<|EOT|>'"'"' -}}{%- endif -%}{%- endif -%}{%- endfor -%}{%- if add_generation_prompt -%}{{- '"'"'<|BOT|>assistant\n<think>\n'"'"' -}}{%- endif -%}'
```
After the service starts, it will listen on `localhost:9999`.
### 🧪 Client Examples
Get the example code and run it:
```bash
# Clone the repository containing example scripts
git clone https://github.com/stepfun-ai/Step-Audio-R1.git r1-scripts
# Run the example
cd r1-scripts
python examples-vllm_r1.py
```
## Citation
```
@article{tian2025step,
title={Step-Audio-R1 Technical Report},
author={Tian, Fei and Zhang, Xiangyu Tony and Zhang, Yuxin and Zhang, Haoyang and Li, Yuxin and Liu, Daijiao and Deng, Yayue and Wu, Donghang and Chen, Jun and Zhao, Liang and others},
journal={arXiv preprint arXiv:2511.15848},
year={2025}
}
```