MelodySim: Measuring Melody-aware Music Similarity for Plagiarism Detection
Paper
•
2505.20979
•
Published
•
1
This is a checkpoint for MelodySim, a MERT-based music audio similarity model which can be used for melody similarity detection. This checkpoint contains pre-trained weights of m-a-p/MERT-v1-95M.
git clone https://github.com/AMAAI-Lab/MelodySim.git
cd MelodySim
pip install -r requirements.txt
from huggingface_hub import hf_hub_download
repo_id = "amaai-lab/MelodySim"
model_path = hf_hub_download(repo_id=repo_id, filename="siamese_net_20250328.ckpt")
or using wget in linux wget https://huggingface.co/amaai-lab/MelodySim/resolve/main/siamese_net_20250328.ckpt
inference.py to run the model on two audio files, analyzing their similarity and reaching a decesion on whether or not they are the same song. We provide a positive pair and a negative pair as examples. Try outpython inference.py -audio-path1 ./data/example_wavs/Track01968_original.mp3 -audio-path2 ./data/example_wavs/Track01976_original.mp3 -ckpt-path path/to/checkpoint.ckpt
python inference.py -audio-path1 ./data/example_wavs/Track01976_original.mp3 -audio-path2 ./data/example_wavs/Track01976_version1.mp3 -ckpt-path path/to/checkpoint.ckpt
Feel free to play around the hyperparameters
-window-len-sec, -hop-len-sec (the way segmenting the input audios);--proportion-thres (how many similar segments should we consider the two pieces to be the same);--decision-thres (between 0 and 1, the smallest similarity value that we consider to be the same);--min-hits (for each window in piece1, the minimum number of similar windows in piece2 to assign that window to be plagiarized).The testing results for the checkpoint on MelodySim Dataset testing split are as follows:
| Precision | Recall | F1 | |
|---|---|---|---|
| Different | 1.00 | 0.94 | 0.97 |
| Similar | 0.94 | 1.00 | 0.97 |
| Average | 0.97 | 0.97 | 0.97 |
| Accuracy | 0.97 |
If you find this work useful in your research, please cite:
@article{lu2025melodysim,
title={Text2midi-InferAlign: Improving Symbolic Music Generation with Inference-Time Alignment},
author={Tongyu Lu and Charlotta-Marlena Geist and Jan Melechovsky and Abhinaba Roy and Dorien Herremans},
year={2025},
journal={arXiv:2505.20979}
}