The dataset viewer is not available for this split.
Error code: FeaturesError
Exception: ArrowInvalid
Message: Schema at index 1 was different:
name: string
description: string
op_type: string
tags: list<item: string>
axes: struct<num_tokens: struct<type: string, description: string>, num_qo_heads: struct<type: string, value: int64, description: string>, head_dim_ckv: struct<type: string, value: int64, description: string>, head_dim_kpe: struct<type: string, value: int64, description: string>, page_size: struct<type: string, value: int64, description: string>, topk: struct<type: string, value: int64, description: string>, num_pages: struct<type: string, description: string>>
constraints: list<item: string>
inputs: struct<q_nope: struct<shape: list<item: string>, dtype: string, description: string>, q_pe: struct<shape: list<item: string>, dtype: string, description: string>, ckv_cache: struct<shape: list<item: string>, dtype: string, description: string>, kpe_cache: struct<shape: list<item: string>, dtype: string, description: string>, sparse_indices: struct<shape: list<item: string>, dtype: string, description: string>, sm_scale: struct<shape: null, dtype: string, description: string>>
outputs: struct<output: struct<shape: list<item: string>, dtype: string>, lse: struct<shape: list<item: string>, dtype: string, description: string>>
reference: string
vs
name: string
description: string
op_type: string
tags: list<item: string>
axes: struct<batch_size: struct<type: string>, num_index_heads: struct<type: string, value: int64, description: string>, index_head_dim: struct<type: string, value: int64, description: string>, page_size: struct<type: string, value: int64, description: string>, topk: struct<type: string, value: int64, description: string>, max_num_pages: struct<type: string, description: string>, num_pages: struct<type: string, description: string>, kv_cache_num_heads: struct<type: string, value: int64, description: string>, head_dim_with_scale: struct<type: string, value: int64, description: string>>
constraints: list<item: string>
inputs: struct<q_index_fp8: struct<shape: list<item: string>, dtype: string, description: string>, k_index_cache_fp8: struct<shape: list<item: string>, dtype: string, description: string>, weights: struct<shape: list<item: string>, dtype: string, description: string>, seq_lens: struct<shape: list<item: string>, dtype: string, description: string>, block_table: struct<shape: list<item: string>, dtype: string, description: string>>
outputs: struct<topk_indices: struct<shape: list<item: string>, dtype: string, description: string>>
reference: string
Traceback: Traceback (most recent call last):
File "/src/services/worker/src/worker/job_runners/split/first_rows.py", line 243, in compute_first_rows_from_streaming_response
iterable_dataset = iterable_dataset._resolve_features()
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 3608, in _resolve_features
features = _infer_features_from_batch(self.with_format(None)._head())
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 2368, in _head
return next(iter(self.iter(batch_size=n)))
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 2573, in iter
for key, example in iterator:
^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 2060, in __iter__
for key, pa_table in self._iter_arrow():
^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 2082, in _iter_arrow
yield from self.ex_iterable._iter_arrow()
File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 572, in _iter_arrow
yield new_key, pa.Table.from_batches(chunks_buffer)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "pyarrow/table.pxi", line 5039, in pyarrow.lib.Table.from_batches
File "pyarrow/error.pxi", line 155, in pyarrow.lib.pyarrow_internal_check_status
File "pyarrow/error.pxi", line 92, in pyarrow.lib.check_status
pyarrow.lib.ArrowInvalid: Schema at index 1 was different:
name: string
description: string
op_type: string
tags: list<item: string>
axes: struct<num_tokens: struct<type: string, description: string>, num_qo_heads: struct<type: string, value: int64, description: string>, head_dim_ckv: struct<type: string, value: int64, description: string>, head_dim_kpe: struct<type: string, value: int64, description: string>, page_size: struct<type: string, value: int64, description: string>, topk: struct<type: string, value: int64, description: string>, num_pages: struct<type: string, description: string>>
constraints: list<item: string>
inputs: struct<q_nope: struct<shape: list<item: string>, dtype: string, description: string>, q_pe: struct<shape: list<item: string>, dtype: string, description: string>, ckv_cache: struct<shape: list<item: string>, dtype: string, description: string>, kpe_cache: struct<shape: list<item: string>, dtype: string, description: string>, sparse_indices: struct<shape: list<item: string>, dtype: string, description: string>, sm_scale: struct<shape: null, dtype: string, description: string>>
outputs: struct<output: struct<shape: list<item: string>, dtype: string>, lse: struct<shape: list<item: string>, dtype: string, description: string>>
reference: string
vs
name: string
description: string
op_type: string
tags: list<item: string>
axes: struct<batch_size: struct<type: string>, num_index_heads: struct<type: string, value: int64, description: string>, index_head_dim: struct<type: string, value: int64, description: string>, page_size: struct<type: string, value: int64, description: string>, topk: struct<type: string, value: int64, description: string>, max_num_pages: struct<type: string, description: string>, num_pages: struct<type: string, description: string>, kv_cache_num_heads: struct<type: string, value: int64, description: string>, head_dim_with_scale: struct<type: string, value: int64, description: string>>
constraints: list<item: string>
inputs: struct<q_index_fp8: struct<shape: list<item: string>, dtype: string, description: string>, k_index_cache_fp8: struct<shape: list<item: string>, dtype: string, description: string>, weights: struct<shape: list<item: string>, dtype: string, description: string>, seq_lens: struct<shape: list<item: string>, dtype: string, description: string>, block_table: struct<shape: list<item: string>, dtype: string, description: string>>
outputs: struct<topk_indices: struct<shape: list<item: string>, dtype: string, description: string>>
reference: stringNeed help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
MLSys 2026 FlashInfer-Bench Challenge Dataset
This repository contains the FlashInfer-Bench dataset for the MLSys 2026 Kenrel Generation Challenge.
This dataset targets to be used in the FlashInfer-Bench benchmark system.
It follows the FlashInfer Trace Schema. To use the dataset in the competition, please refer to our starter kit.
Download
Use this command to download the dataset:
git lfs install
git clone https://huggingface.co/datasets/flashinfer-ai/mlsys26-contest
Set the environment variable so that FlashInfer-Bench can find the dataset:
export FIB_DATASET_PATH=/path/to/mlsys26-contest
Tasks
This dataset contains the definitions and workloads for these kernels:
- Fused Mixture of Experts (MoE)
- Gated Delta Network (GDN)
- DeepSeek Sparse Attention (DSA)
Dataset Structure
It is organized as follows:
mlsys26-contest/
├── definitions/
└── workloads/
These components are provided in the dataset:
- Definition: describes the input, output, and computation logic of a kernel task.
- Workload: describes the inputs for a definition during real inference. This will be used to benchmark the Solution you provided.
During benchmarking, these components should be provided or generated:
- Solution: provided by participants, your implementation of the kernel task.
- Trace: generated by FlashInfer-Bench, the performance and correctness results of your solution on the workloads.
- Downloads last month
- 125