dataset-stats / long-context-pdfs.py
davanstrien's picture
davanstrien HF Staff
fix: Use sink_parquet for true streaming (minimal memory)
a8d2ecd
# /// script
# requires-python = ">=3.10"
# dependencies = [
# "polars>=1.0",
# "datasets",
# ]
# ///
"""
Extract long-context, high-quality PDFs from finepdfs.
Creates a curated subset of long documents with high OCR quality -
useful for long-context model training.
Examples:
# Quick test (Welsh)
uv run long-context-pdfs.py --lang cym_Latn --limit 100
# English long docs
uv run long-context-pdfs.py --lang eng_Latn --output user/finepdfs-eng-long
# All Latin scripts
uv run long-context-pdfs.py --lang "*_Latn" --output user/finepdfs-long-context
# HF Jobs (memory-efficient with small chunk size)
hf jobs uv run \\
-s HF_TOKEN \\
https://huggingface.co/datasets/uv-scripts/dataset-stats/raw/main/long-context-pdfs.py \\
-- --lang eng_Latn --output user/finepdfs-eng-long
"""
import argparse
import tempfile
from pathlib import Path
import polars as pl
from datasets import Dataset
def main():
parser = argparse.ArgumentParser(
description="Extract long-context high-quality PDFs"
)
parser.add_argument(
"--lang",
type=str,
default="cym_Latn",
help="Language code or glob pattern (default: cym_Latn, use '*_Latn' for all Latin)",
)
parser.add_argument(
"--min-tokens",
type=int,
default=10000,
help="Minimum token count (default: 10000)",
)
parser.add_argument(
"--min-lid-score",
type=float,
default=0.8,
help="Minimum language ID score (default: 0.8)",
)
parser.add_argument("--limit", type=int, help="Limit rows")
parser.add_argument("--output", type=str, help="Output dataset repo")
parser.add_argument("--private", action="store_true")
args = parser.parse_args()
source = f"hf://datasets/HuggingFaceFW/finepdfs/data/{args.lang}/train/*.parquet"
print("=" * 60)
print("Long-Context High-Quality PDF Extraction")
print("=" * 60)
print(f"Source: {source}")
print("Filters:")
print(f" - token_count >= {args.min_tokens}")
print(f" - page_average_lid_score >= {args.min_lid_score}")
print(" - extractor == 'docling'")
if args.limit:
print(f" - limit: {args.limit}")
print("=" * 60)
# Build query - simpler filters first, OCR quality filter can be tricky
lf = (
pl.scan_parquet(source)
.filter(
(pl.col("token_count") >= args.min_tokens)
& (pl.col("page_average_lid_score") >= args.min_lid_score)
& (pl.col("extractor") == "docling")
)
.select(
[
"id",
"url",
"text",
"language",
"token_count",
"dump",
"page_average_lid_score",
]
)
)
if args.limit:
lf = lf.limit(args.limit)
# Preview
print("\nPreviewing...")
preview = lf.limit(5).collect()
print(f"Sample rows: {len(preview)}")
if len(preview) > 0:
print(preview.select(["language", "token_count", "page_average_lid_score"]))
else:
print("No rows matched! Try lowering thresholds.")
return
if not args.output:
print("\nNo --output specified. Use --output to push to Hub.")
return
# Rebuild query for streaming to parquet
lf = (
pl.scan_parquet(source)
.filter(
(pl.col("token_count") >= args.min_tokens)
& (pl.col("page_average_lid_score") >= args.min_lid_score)
& (pl.col("extractor") == "docling")
)
.select(
[
"id",
"url",
"text",
"language",
"token_count",
"dump",
"page_average_lid_score",
]
)
)
if args.limit:
lf = lf.limit(args.limit)
# Use sink_parquet for true streaming (minimal memory)
with tempfile.TemporaryDirectory() as tmpdir:
output_path = Path(tmpdir) / "data.parquet"
print("\nStreaming to parquet (sink_parquet)...")
lf.sink_parquet(output_path)
print(f"\nLoading parquet and pushing to {args.output}...")
ds = Dataset.from_parquet(str(output_path))
print(f"Dataset: {len(ds)} rows")
ds.push_to_hub(args.output, private=args.private)
print(f"\nDone! https://huggingface.co/datasets/{args.output}")
if __name__ == "__main__":
main()