|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
|
Extract long-context, high-quality PDFs from finepdfs. |
|
|
|
|
|
Creates a curated subset of long documents with high OCR quality - |
|
|
useful for long-context model training. |
|
|
|
|
|
Examples: |
|
|
# Quick test (Welsh) |
|
|
uv run long-context-pdfs.py --lang cym_Latn --limit 100 |
|
|
|
|
|
# English long docs |
|
|
uv run long-context-pdfs.py --lang eng_Latn --output user/finepdfs-eng-long |
|
|
|
|
|
# All Latin scripts |
|
|
uv run long-context-pdfs.py --lang "*_Latn" --output user/finepdfs-long-context |
|
|
|
|
|
# HF Jobs (memory-efficient with small chunk size) |
|
|
hf jobs uv run \\ |
|
|
-s HF_TOKEN \\ |
|
|
https://huggingface.co/datasets/uv-scripts/dataset-stats/raw/main/long-context-pdfs.py \\ |
|
|
-- --lang eng_Latn --output user/finepdfs-eng-long |
|
|
""" |
|
|
|
|
|
import argparse |
|
|
import tempfile |
|
|
from pathlib import Path |
|
|
|
|
|
import polars as pl |
|
|
from datasets import Dataset |
|
|
|
|
|
|
|
|
def main(): |
|
|
parser = argparse.ArgumentParser( |
|
|
description="Extract long-context high-quality PDFs" |
|
|
) |
|
|
parser.add_argument( |
|
|
"--lang", |
|
|
type=str, |
|
|
default="cym_Latn", |
|
|
help="Language code or glob pattern (default: cym_Latn, use '*_Latn' for all Latin)", |
|
|
) |
|
|
parser.add_argument( |
|
|
"--min-tokens", |
|
|
type=int, |
|
|
default=10000, |
|
|
help="Minimum token count (default: 10000)", |
|
|
) |
|
|
parser.add_argument( |
|
|
"--min-lid-score", |
|
|
type=float, |
|
|
default=0.8, |
|
|
help="Minimum language ID score (default: 0.8)", |
|
|
) |
|
|
parser.add_argument("--limit", type=int, help="Limit rows") |
|
|
parser.add_argument("--output", type=str, help="Output dataset repo") |
|
|
parser.add_argument("--private", action="store_true") |
|
|
|
|
|
args = parser.parse_args() |
|
|
|
|
|
source = f"hf://datasets/HuggingFaceFW/finepdfs/data/{args.lang}/train/*.parquet" |
|
|
|
|
|
print("=" * 60) |
|
|
print("Long-Context High-Quality PDF Extraction") |
|
|
print("=" * 60) |
|
|
print(f"Source: {source}") |
|
|
print("Filters:") |
|
|
print(f" - token_count >= {args.min_tokens}") |
|
|
print(f" - page_average_lid_score >= {args.min_lid_score}") |
|
|
print(" - extractor == 'docling'") |
|
|
if args.limit: |
|
|
print(f" - limit: {args.limit}") |
|
|
print("=" * 60) |
|
|
|
|
|
|
|
|
lf = ( |
|
|
pl.scan_parquet(source) |
|
|
.filter( |
|
|
(pl.col("token_count") >= args.min_tokens) |
|
|
& (pl.col("page_average_lid_score") >= args.min_lid_score) |
|
|
& (pl.col("extractor") == "docling") |
|
|
) |
|
|
.select( |
|
|
[ |
|
|
"id", |
|
|
"url", |
|
|
"text", |
|
|
"language", |
|
|
"token_count", |
|
|
"dump", |
|
|
"page_average_lid_score", |
|
|
] |
|
|
) |
|
|
) |
|
|
|
|
|
if args.limit: |
|
|
lf = lf.limit(args.limit) |
|
|
|
|
|
|
|
|
print("\nPreviewing...") |
|
|
preview = lf.limit(5).collect() |
|
|
print(f"Sample rows: {len(preview)}") |
|
|
if len(preview) > 0: |
|
|
print(preview.select(["language", "token_count", "page_average_lid_score"])) |
|
|
else: |
|
|
print("No rows matched! Try lowering thresholds.") |
|
|
return |
|
|
|
|
|
if not args.output: |
|
|
print("\nNo --output specified. Use --output to push to Hub.") |
|
|
return |
|
|
|
|
|
|
|
|
lf = ( |
|
|
pl.scan_parquet(source) |
|
|
.filter( |
|
|
(pl.col("token_count") >= args.min_tokens) |
|
|
& (pl.col("page_average_lid_score") >= args.min_lid_score) |
|
|
& (pl.col("extractor") == "docling") |
|
|
) |
|
|
.select( |
|
|
[ |
|
|
"id", |
|
|
"url", |
|
|
"text", |
|
|
"language", |
|
|
"token_count", |
|
|
"dump", |
|
|
"page_average_lid_score", |
|
|
] |
|
|
) |
|
|
) |
|
|
if args.limit: |
|
|
lf = lf.limit(args.limit) |
|
|
|
|
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdir: |
|
|
output_path = Path(tmpdir) / "data.parquet" |
|
|
print("\nStreaming to parquet (sink_parquet)...") |
|
|
lf.sink_parquet(output_path) |
|
|
|
|
|
print(f"\nLoading parquet and pushing to {args.output}...") |
|
|
ds = Dataset.from_parquet(str(output_path)) |
|
|
print(f"Dataset: {len(ds)} rows") |
|
|
ds.push_to_hub(args.output, private=args.private) |
|
|
|
|
|
print(f"\nDone! https://huggingface.co/datasets/{args.output}") |
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
main() |
|
|
|