File size: 4,514 Bytes
9701750
 
 
7d840d3
9701750
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e83419
 
 
 
 
9701750
 
 
a8d2ecd
 
9701750
a8d2ecd
 
9701750
 
 
8e83419
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9701750
 
 
 
 
 
 
 
 
 
 
 
8e83419
9701750
 
8e83419
9701750
 
 
 
 
 
 
 
 
 
 
 
8e83419
 
 
 
 
 
 
 
 
 
 
9701750
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a8d2ecd
9701750
 
 
 
 
 
 
8e83419
 
 
 
 
 
 
 
 
 
 
9701750
 
 
 
a8d2ecd
 
 
 
 
 
 
 
 
 
9701750
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
# /// script
# requires-python = ">=3.10"
# dependencies = [
#     "polars>=1.0",
#     "datasets",
# ]
# ///
"""
Extract long-context, high-quality PDFs from finepdfs.

Creates a curated subset of long documents with high OCR quality -
useful for long-context model training.

Examples:
    # Quick test (Welsh)
    uv run long-context-pdfs.py --lang cym_Latn --limit 100

    # English long docs
    uv run long-context-pdfs.py --lang eng_Latn --output user/finepdfs-eng-long

    # All Latin scripts
    uv run long-context-pdfs.py --lang "*_Latn" --output user/finepdfs-long-context

    # HF Jobs (memory-efficient with small chunk size)
    hf jobs uv run \\
        -s HF_TOKEN \\
        https://huggingface.co/datasets/uv-scripts/dataset-stats/raw/main/long-context-pdfs.py \\
        -- --lang eng_Latn --output user/finepdfs-eng-long
"""

import argparse
import tempfile
from pathlib import Path

import polars as pl
from datasets import Dataset


def main():
    parser = argparse.ArgumentParser(
        description="Extract long-context high-quality PDFs"
    )
    parser.add_argument(
        "--lang",
        type=str,
        default="cym_Latn",
        help="Language code or glob pattern (default: cym_Latn, use '*_Latn' for all Latin)",
    )
    parser.add_argument(
        "--min-tokens",
        type=int,
        default=10000,
        help="Minimum token count (default: 10000)",
    )
    parser.add_argument(
        "--min-lid-score",
        type=float,
        default=0.8,
        help="Minimum language ID score (default: 0.8)",
    )
    parser.add_argument("--limit", type=int, help="Limit rows")
    parser.add_argument("--output", type=str, help="Output dataset repo")
    parser.add_argument("--private", action="store_true")

    args = parser.parse_args()

    source = f"hf://datasets/HuggingFaceFW/finepdfs/data/{args.lang}/train/*.parquet"

    print("=" * 60)
    print("Long-Context High-Quality PDF Extraction")
    print("=" * 60)
    print(f"Source: {source}")
    print("Filters:")
    print(f"  - token_count >= {args.min_tokens}")
    print(f"  - page_average_lid_score >= {args.min_lid_score}")
    print("  - extractor == 'docling'")
    if args.limit:
        print(f"  - limit: {args.limit}")
    print("=" * 60)

    # Build query - simpler filters first, OCR quality filter can be tricky
    lf = (
        pl.scan_parquet(source)
        .filter(
            (pl.col("token_count") >= args.min_tokens)
            & (pl.col("page_average_lid_score") >= args.min_lid_score)
            & (pl.col("extractor") == "docling")
        )
        .select(
            [
                "id",
                "url",
                "text",
                "language",
                "token_count",
                "dump",
                "page_average_lid_score",
            ]
        )
    )

    if args.limit:
        lf = lf.limit(args.limit)

    # Preview
    print("\nPreviewing...")
    preview = lf.limit(5).collect()
    print(f"Sample rows: {len(preview)}")
    if len(preview) > 0:
        print(preview.select(["language", "token_count", "page_average_lid_score"]))
    else:
        print("No rows matched! Try lowering thresholds.")
        return

    if not args.output:
        print("\nNo --output specified. Use --output to push to Hub.")
        return

    # Rebuild query for streaming to parquet
    lf = (
        pl.scan_parquet(source)
        .filter(
            (pl.col("token_count") >= args.min_tokens)
            & (pl.col("page_average_lid_score") >= args.min_lid_score)
            & (pl.col("extractor") == "docling")
        )
        .select(
            [
                "id",
                "url",
                "text",
                "language",
                "token_count",
                "dump",
                "page_average_lid_score",
            ]
        )
    )
    if args.limit:
        lf = lf.limit(args.limit)

    # Use sink_parquet for true streaming (minimal memory)
    with tempfile.TemporaryDirectory() as tmpdir:
        output_path = Path(tmpdir) / "data.parquet"
        print("\nStreaming to parquet (sink_parquet)...")
        lf.sink_parquet(output_path)

        print(f"\nLoading parquet and pushing to {args.output}...")
        ds = Dataset.from_parquet(str(output_path))
        print(f"Dataset: {len(ds)} rows")
        ds.push_to_hub(args.output, private=args.private)

    print(f"\nDone! https://huggingface.co/datasets/{args.output}")


if __name__ == "__main__":
    main()