davanstrien HF Staff Claude Opus 4.5 commited on
Commit
8e83419
·
1 Parent(s): 9701750

fix: Add memory controls to prevent OOM on HF Jobs

Browse files

- Add pl.Config.set_streaming_chunk_size(1000) for large text docs
- Add chunk_size parameter to polars_to_generator (default: 100)
- Add --chunk-size CLI argument for user tuning
- Update HF Jobs command syntax in docstring

Fixes exit code 137 (OOM) when processing large text documents.

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude Opus 4.5 <[email protected]>

Files changed (1) hide show
  1. long-context-pdfs.py +71 -36
long-context-pdfs.py CHANGED
@@ -21,10 +21,11 @@ Examples:
21
  # All Latin scripts
22
  uv run long-context-pdfs.py --lang "*_Latn" --output user/finepdfs-long-context
23
 
24
- # HF Jobs
25
- hf jobs run uv --flavor cpu-basic -- run \\
26
- https://huggingface.co/.../long-context-pdfs.py \\
27
- --lang eng_Latn --output user/finepdfs-eng-long
 
28
  """
29
 
30
  import argparse
@@ -32,36 +33,64 @@ import polars as pl
32
  from datasets import Dataset
33
 
34
 
35
- def polars_to_generator(lf: pl.LazyFrame):
36
- """Stream LazyFrame as row generator."""
37
- for batch_df in lf.collect_batches():
 
 
 
 
 
38
  yield from batch_df.iter_rows(named=True)
39
 
40
 
41
  def main():
42
- parser = argparse.ArgumentParser(description="Extract long-context high-quality PDFs")
43
- parser.add_argument("--lang", type=str, default="cym_Latn",
44
- help="Language code or glob pattern (default: cym_Latn, use '*_Latn' for all Latin)")
45
- parser.add_argument("--min-tokens", type=int, default=10000,
46
- help="Minimum token count (default: 10000)")
47
- parser.add_argument("--min-lid-score", type=float, default=0.8,
48
- help="Minimum language ID score (default: 0.8)")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49
  parser.add_argument("--limit", type=int, help="Limit rows")
50
  parser.add_argument("--output", type=str, help="Output dataset repo")
51
  parser.add_argument("--private", action="store_true")
 
 
 
 
 
 
52
 
53
  args = parser.parse_args()
54
 
 
 
 
55
  source = f"hf://datasets/HuggingFaceFW/finepdfs/data/{args.lang}/train/*.parquet"
56
 
57
  print("=" * 60)
58
  print("Long-Context High-Quality PDF Extraction")
59
  print("=" * 60)
60
  print(f"Source: {source}")
61
- print(f"Filters:")
62
  print(f" - token_count >= {args.min_tokens}")
63
  print(f" - page_average_lid_score >= {args.min_lid_score}")
64
- print(f" - extractor == 'docling'")
65
  if args.limit:
66
  print(f" - limit: {args.limit}")
67
  print("=" * 60)
@@ -74,15 +103,17 @@ def main():
74
  & (pl.col("page_average_lid_score") >= args.min_lid_score)
75
  & (pl.col("extractor") == "docling")
76
  )
77
- .select([
78
- "id",
79
- "url",
80
- "text",
81
- "language",
82
- "token_count",
83
- "dump",
84
- "page_average_lid_score",
85
- ])
 
 
86
  )
87
 
88
  if args.limit:
@@ -110,21 +141,25 @@ def main():
110
  & (pl.col("page_average_lid_score") >= args.min_lid_score)
111
  & (pl.col("extractor") == "docling")
112
  )
113
- .select([
114
- "id",
115
- "url",
116
- "text",
117
- "language",
118
- "token_count",
119
- "dump",
120
- "page_average_lid_score",
121
- ])
 
 
122
  )
123
  if args.limit:
124
  lf = lf.limit(args.limit)
125
 
126
- print(f"\nStreaming to dataset...")
127
- ds = Dataset.from_generator(lambda: polars_to_generator(lf))
 
 
128
  print(f"Created dataset with {len(ds)} rows")
129
 
130
  print(f"\nPushing to {args.output}...")
 
21
  # All Latin scripts
22
  uv run long-context-pdfs.py --lang "*_Latn" --output user/finepdfs-long-context
23
 
24
+ # HF Jobs (memory-efficient with small chunk size)
25
+ hf jobs uv run \\
26
+ -s HF_TOKEN \\
27
+ https://huggingface.co/datasets/uv-scripts/dataset-stats/raw/main/long-context-pdfs.py \\
28
+ -- --lang eng_Latn --output user/finepdfs-eng-long
29
  """
30
 
31
  import argparse
 
33
  from datasets import Dataset
34
 
35
 
36
+ def polars_to_generator(lf: pl.LazyFrame, chunk_size: int = 100):
37
+ """Stream LazyFrame as row generator with controlled memory.
38
+
39
+ Args:
40
+ lf: LazyFrame to stream
41
+ chunk_size: Rows per batch (lower = less memory). Default 100 for large text docs.
42
+ """
43
+ for batch_df in lf.collect_batches(chunk_size=chunk_size):
44
  yield from batch_df.iter_rows(named=True)
45
 
46
 
47
  def main():
48
+ parser = argparse.ArgumentParser(
49
+ description="Extract long-context high-quality PDFs"
50
+ )
51
+ parser.add_argument(
52
+ "--lang",
53
+ type=str,
54
+ default="cym_Latn",
55
+ help="Language code or glob pattern (default: cym_Latn, use '*_Latn' for all Latin)",
56
+ )
57
+ parser.add_argument(
58
+ "--min-tokens",
59
+ type=int,
60
+ default=10000,
61
+ help="Minimum token count (default: 10000)",
62
+ )
63
+ parser.add_argument(
64
+ "--min-lid-score",
65
+ type=float,
66
+ default=0.8,
67
+ help="Minimum language ID score (default: 0.8)",
68
+ )
69
  parser.add_argument("--limit", type=int, help="Limit rows")
70
  parser.add_argument("--output", type=str, help="Output dataset repo")
71
  parser.add_argument("--private", action="store_true")
72
+ parser.add_argument(
73
+ "--chunk-size",
74
+ type=int,
75
+ default=100,
76
+ help="Rows per batch (lower = less memory, default: 100)",
77
+ )
78
 
79
  args = parser.parse_args()
80
 
81
+ # Reduce streaming chunk size for large text documents (default can cause OOM)
82
+ pl.Config.set_streaming_chunk_size(1000)
83
+
84
  source = f"hf://datasets/HuggingFaceFW/finepdfs/data/{args.lang}/train/*.parquet"
85
 
86
  print("=" * 60)
87
  print("Long-Context High-Quality PDF Extraction")
88
  print("=" * 60)
89
  print(f"Source: {source}")
90
+ print("Filters:")
91
  print(f" - token_count >= {args.min_tokens}")
92
  print(f" - page_average_lid_score >= {args.min_lid_score}")
93
+ print(" - extractor == 'docling'")
94
  if args.limit:
95
  print(f" - limit: {args.limit}")
96
  print("=" * 60)
 
103
  & (pl.col("page_average_lid_score") >= args.min_lid_score)
104
  & (pl.col("extractor") == "docling")
105
  )
106
+ .select(
107
+ [
108
+ "id",
109
+ "url",
110
+ "text",
111
+ "language",
112
+ "token_count",
113
+ "dump",
114
+ "page_average_lid_score",
115
+ ]
116
+ )
117
  )
118
 
119
  if args.limit:
 
141
  & (pl.col("page_average_lid_score") >= args.min_lid_score)
142
  & (pl.col("extractor") == "docling")
143
  )
144
+ .select(
145
+ [
146
+ "id",
147
+ "url",
148
+ "text",
149
+ "language",
150
+ "token_count",
151
+ "dump",
152
+ "page_average_lid_score",
153
+ ]
154
+ )
155
  )
156
  if args.limit:
157
  lf = lf.limit(args.limit)
158
 
159
+ print(f"\nStreaming to dataset (chunk_size={args.chunk_size})...")
160
+ ds = Dataset.from_generator(
161
+ lambda: polars_to_generator(lf, chunk_size=args.chunk_size)
162
+ )
163
  print(f"Created dataset with {len(ds)} rows")
164
 
165
  print(f"\nPushing to {args.output}...")