Dataset Viewer
Auto-converted to Parquet Duplicate
Search is not available for this dataset
image
imagewidth (px)
1.28k
1.28k
End of preview. Expand in Data Studio

Website GitHub Hugging Face Follow on X

 _   _ _   _______ ___________ _    _  ___________ _    ______ 
| | | | \ | |  _  \  ___| ___ \ |  | ||  _  | ___ \ |   |  _  \
| | | |  \| | | | | |__ | |_/ / |  | || | | | |_/ / |   | | | |
| | | | . ` | | | |  __||    /| |/\| || | | |    /| |   | | | |
| |_| | |\  | |/ /| |___| |\ \\  /\  /\ \_/ / |\ \| |___| |/ / 
 \___/\_| \_/___/ \____/\_| \_|\/  \/  \___/\_| \_\_____/___/  
      

UNDERWORLD Dataset v3

  • Visualizes the Fast Inverse Square Root (FISR / Quake III) algorithm.
  • 120 rows total (train split only).
  • Main content: 1280px PNG image frames showing bit hacks, Newton-Raphson steps, error surfaces, 3D math plots.
  • Numerical_data.csv (regression), metadata.json (conditional).
  • Size ~3.5 MB. Generated via UNDERGROUND: FISR tool (downloadable in repo).
  • Magic Number: 0x5f23aac5
  • Newton Iterations: 3
  • Input Range: 0.1 to 1000
  • Maximum Error: 1.1742636926798086e+287%

Generated with UNDERWORLD: FISR by webXOS, Educational visualization of the Quake III Arena optimization algorithm.

The UNDERWORLD app by webXOS is available for download in the /underworld/ folder of this repo so users can create their own datasets.

Use cases:

  • Training ML models for fault detection / anomaly detection in time-series or sensor data.

  • Simulating hardware faults (bit flips, stuck-at, etc.) for robust AI / embedded ML.

  • Reliability engineering: predict system failures under errors.

  • Synthetic data for safety-critical systems (automotive, aerospace, IoT) where real fault data is rare.

  • Benchmarking error-correction / resilient algorithms.

  • Visual sequence learning → train models on math visualization sequences (frame prediction, video understanding).

  • Image-to-text / captioning → describe FISR steps from images.

  • Visual question answering → QA on algorithm visuals.

  • Regression from images → predict error metrics from visualization frames.

  • Educational multimodal models → teach bit manipulation / fast math approx.

  • Conditional generation → use metadata to condition on input range/error.

  • 3D math function visualization benchmark → compare rendering / understanding.

Education:

  1. The Fast Inverse Square Root algorithm implementation
  2. Error analysis of the approximation
  3. 3D visualization of mathematical functions
  4. Bit-level manipulation techniques

Usage for Training:

  1. Use frames/ for visual sequence learning
  2. Use numerical_data.csv for regression tasks
  3. Use metadata.json for conditional generation
  4. Train models to understand optimization algorithms

Citation:

If you use this dataset, please cite: UNDERGROUND: FISR by webXOS, 2027

License:

MIT

Downloads last month
16