Spaces:
Running
on
Zero
Running
on
Zero
| import numpy as np | |
| import os | |
| import torch | |
| from einops import rearrange | |
| script_directory = os.path.dirname(os.path.abspath(__file__)) | |
| class Camera(object): | |
| """Copied from https://github.com/hehao13/CameraCtrl/blob/main/inference.py | |
| """ | |
| def __init__(self, entry): | |
| fx, fy, cx, cy = entry[1:5] | |
| self.fx = fx | |
| self.fy = fy | |
| self.cx = cx | |
| self.cy = cy | |
| w2c_mat = np.array(entry[7:]).reshape(3, 4) | |
| w2c_mat_4x4 = np.eye(4) | |
| w2c_mat_4x4[:3, :] = w2c_mat | |
| self.w2c_mat = w2c_mat_4x4 | |
| self.c2w_mat = np.linalg.inv(w2c_mat_4x4) | |
| def custom_meshgrid(*args): | |
| """Copied from https://github.com/hehao13/CameraCtrl/blob/main/inference.py | |
| """ | |
| # ref: https://pytorch.org/docs/stable/generated/torch.meshgrid.html?highlight=meshgrid#torch.meshgrid | |
| return torch.meshgrid(*args) | |
| def get_relative_pose(cam_params): | |
| """Copied from https://github.com/hehao13/CameraCtrl/blob/main/inference.py | |
| """ | |
| abs_w2cs = [cam_param.w2c_mat for cam_param in cam_params] | |
| abs_c2ws = [cam_param.c2w_mat for cam_param in cam_params] | |
| cam_to_origin = 0 | |
| target_cam_c2w = np.array([ | |
| [1, 0, 0, 0], | |
| [0, 1, 0, -cam_to_origin], | |
| [0, 0, 1, 0], | |
| [0, 0, 0, 1] | |
| ]) | |
| abs2rel = target_cam_c2w @ abs_w2cs[0] | |
| ret_poses = [target_cam_c2w, ] + [abs2rel @ abs_c2w for abs_c2w in abs_c2ws[1:]] | |
| ret_poses = np.array(ret_poses, dtype=np.float32) | |
| return ret_poses | |
| def ray_condition(K, c2w, H, W, device): | |
| """Copied from https://github.com/hehao13/CameraCtrl/blob/main/inference.py | |
| """ | |
| # c2w: B, V, 4, 4 | |
| # K: B, V, 4 | |
| B = K.shape[0] | |
| j, i = custom_meshgrid( | |
| torch.linspace(0, H - 1, H, device=device, dtype=c2w.dtype), | |
| torch.linspace(0, W - 1, W, device=device, dtype=c2w.dtype), | |
| ) | |
| i = i.reshape([1, 1, H * W]).expand([B, 1, H * W]) + 0.5 # [B, HxW] | |
| j = j.reshape([1, 1, H * W]).expand([B, 1, H * W]) + 0.5 # [B, HxW] | |
| fx, fy, cx, cy = K.chunk(4, dim=-1) # B,V, 1 | |
| zs = torch.ones_like(i) # [B, HxW] | |
| xs = (i - cx) / fx * zs | |
| ys = (j - cy) / fy * zs | |
| zs = zs.expand_as(ys) | |
| directions = torch.stack((xs, ys, zs), dim=-1) # B, V, HW, 3 | |
| directions = directions / directions.norm(dim=-1, keepdim=True) # B, V, HW, 3 | |
| rays_d = directions @ c2w[..., :3, :3].transpose(-1, -2) # B, V, 3, HW | |
| rays_o = c2w[..., :3, 3] # B, V, 3 | |
| rays_o = rays_o[:, :, None].expand_as(rays_d) # B, V, 3, HW | |
| # c2w @ dirctions | |
| rays_dxo = torch.cross(rays_o, rays_d) | |
| plucker = torch.cat([rays_dxo, rays_d], dim=-1) | |
| plucker = plucker.reshape(B, c2w.shape[1], H, W, 6) # B, V, H, W, 6 | |
| # plucker = plucker.permute(0, 1, 4, 2, 3) | |
| return plucker | |
| def process_poses(poses, width=672, height=384, original_pose_width=1280, original_pose_height=720, device='cpu', return_poses=False): | |
| """Modified from https://github.com/hehao13/CameraCtrl/blob/main/inference.py | |
| """ | |
| cam_params = [[float(x) for x in pose] for pose in poses] | |
| if return_poses: | |
| return cam_params | |
| else: | |
| cam_params = [Camera(cam_param) for cam_param in cam_params] | |
| sample_wh_ratio = width / height | |
| pose_wh_ratio = original_pose_width / original_pose_height # Assuming placeholder ratios, change as needed | |
| if pose_wh_ratio > sample_wh_ratio: | |
| resized_ori_w = height * pose_wh_ratio | |
| for cam_param in cam_params: | |
| cam_param.fx = resized_ori_w * cam_param.fx / width | |
| else: | |
| resized_ori_h = width / pose_wh_ratio | |
| for cam_param in cam_params: | |
| cam_param.fy = resized_ori_h * cam_param.fy / height | |
| intrinsic = np.asarray([[cam_param.fx * width, | |
| cam_param.fy * height, | |
| cam_param.cx * width, | |
| cam_param.cy * height] | |
| for cam_param in cam_params], dtype=np.float32) | |
| K = torch.as_tensor(intrinsic)[None] # [1, 1, 4] | |
| c2ws = get_relative_pose(cam_params) # Assuming this function is defined elsewhere | |
| c2ws = torch.as_tensor(c2ws)[None] # [1, n_frame, 4, 4] | |
| plucker_embedding = ray_condition(K, c2ws, height, width, device=device)[0].permute(0, 3, 1, 2).contiguous() # V, 6, H, W | |
| plucker_embedding = plucker_embedding[None] | |
| plucker_embedding = rearrange(plucker_embedding, "b f c h w -> b f h w c")[0] | |
| return plucker_embedding | |
| class WanVideoFunCameraEmbeds: | |
| def INPUT_TYPES(s): | |
| return {"required": { | |
| "poses": ("CAMERACTRL_POSES", ), | |
| "width": ("INT", {"default": 832, "min": 64, "max": 2048, "step": 8, "tooltip": "Width of the image to encode"}), | |
| "height": ("INT", {"default": 480, "min": 64, "max": 29048, "step": 8, "tooltip": "Height of the image to encode"}), | |
| "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01, "tooltip": "Strength of the camera motion"}), | |
| "start_percent": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01, "tooltip": "Start percent of the steps to apply camera motion"}), | |
| "end_percent": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01, "tooltip": "End percent of the steps to apply camera motion"}), | |
| }, | |
| # "optional": { | |
| # "fun_ref_image": ("LATENT", {"tooltip": "Reference latent for the Fun 1.1 -model"}), | |
| # } | |
| } | |
| RETURN_TYPES = ("WANVIDIMAGE_EMBEDS",) | |
| RETURN_NAMES = ("image_embeds",) | |
| FUNCTION = "process" | |
| CATEGORY = "WanVideoWrapper" | |
| def process(self, poses, width, height, strength, start_percent, end_percent, fun_ref_image=None): | |
| num_frames = len(poses) | |
| control_camera_video = process_poses(poses, width, height) | |
| control_camera_video = control_camera_video.permute([3, 0, 1, 2]).unsqueeze(0) | |
| print("control_camera_video.shape", control_camera_video.shape) | |
| # Rearrange dimensions | |
| # Concatenate and transpose dimensions | |
| control_camera_latents = torch.concat( | |
| [ | |
| torch.repeat_interleave(control_camera_video[:, :, 0:1], repeats=4, dim=2), | |
| control_camera_video[:, :, 1:] | |
| ], dim=2 | |
| ).transpose(1, 2) | |
| # Reshape, transpose, and view into desired shape | |
| b, f, c, h, w = control_camera_latents.shape | |
| control_camera_latents = control_camera_latents.contiguous().view(b, f // 4, 4, c, h, w).transpose(2, 3) | |
| control_camera_latents = control_camera_latents.contiguous().view(b, f // 4, c * 4, h, w).transpose(1, 2) | |
| print("control_camera_latents.shape", control_camera_latents.shape) | |
| vae_stride = (4, 8, 8) | |
| target_shape = (16, (num_frames - 1) // vae_stride[0] + 1, | |
| height // vae_stride[1], | |
| width // vae_stride[2]) | |
| embeds = { | |
| "target_shape": target_shape, | |
| "num_frames": num_frames, | |
| "control_embeds": { | |
| "control_camera_latents": control_camera_latents * strength, | |
| "control_camera_start_percent": start_percent, | |
| "control_camera_end_percent": end_percent, | |
| "fun_ref_image": fun_ref_image["samples"][:,:, 0] if fun_ref_image is not None else None, | |
| } | |
| } | |
| return (embeds,) | |
| NODE_CLASS_MAPPINGS = { | |
| "WanVideoFunCameraEmbeds": WanVideoFunCameraEmbeds, | |
| } | |
| NODE_DISPLAY_NAME_MAPPINGS = { | |
| "WanVideoFunCameraEmbeds": "WanVideo FunCamera Embeds", | |
| } | |