File size: 55,577 Bytes
5d7f7a8 ea59941 e51517c 5d7f7a8 e51517c 5d7f7a8 e51517c 5d7f7a8 e86b678 5d7f7a8 8b4f062 e86b678 8b4f062 3613ad7 5d7f7a8 e51517c 2f781ff 5e57630 2f781ff 5e57630 2f781ff 5e57630 2f781ff 5e57630 2f781ff e51517c 5d7f7a8 19d1d68 5d7f7a8 e51517c 5d7f7a8 2f781ff 5e57630 2f781ff 5e57630 2f781ff 5d7f7a8 19d1d68 5d7f7a8 19d1d68 5d7f7a8 44aa7a0 5d7f7a8 44aa7a0 5d7f7a8 5e57630 5d7f7a8 ea59941 399f83d ea59941 5e57630 ea59941 5e57630 ea59941 5e57630 399f83d 5d7f7a8 e51517c 5d7f7a8 e51517c 5d7f7a8 44aa7a0 5d7f7a8 44aa7a0 5d7f7a8 19d1d68 5d7f7a8 44aa7a0 5d7f7a8 741a123 bae9ed4 e35db16 741a123 bae9ed4 e35db16 eb3dc19 bae9ed4 4f668f2 bae9ed4 4f668f2 bae9ed4 4f668f2 bae9ed4 e35db16 4f668f2 bae9ed4 4f668f2 eb3dc19 4f668f2 eb3dc19 e35db16 4f668f2 eb3dc19 4f668f2 e35db16 741a123 e35db16 741a123 e35db16 741a123 e35db16 741a123 e35db16 4f668f2 bae9ed4 e51517c 5d7f7a8 399f83d 5d7f7a8 8b4f062 399f83d 12e9ab7 399f83d 12e9ab7 399f83d 12e9ab7 399f83d 8b4f062 399f83d 5d7f7a8 19d1d68 5d7f7a8 2f781ff 5e57630 2f781ff 5e57630 2f781ff 5d7f7a8 399f83d 5d7f7a8 399f83d 5e57630 399f83d ea59941 399f83d ea59941 5e57630 ea59941 5e57630 ea59941 5e57630 399f83d 12e9ab7 399f83d 5d7f7a8 399f83d 5d7f7a8 399f83d 5d7f7a8 399f83d 12e9ab7 8b4f062 5d7f7a8 12e9ab7 399f83d 5d7f7a8 399f83d 5d7f7a8 399f83d 5d7f7a8 399f83d 8b4f062 399f83d 8b4f062 5d7f7a8 8b4f062 5d7f7a8 eb3dc19 5d7f7a8 399f83d 173eddc 5d7f7a8 c1d7cbf 4f668f2 0533c5a 48dd4e6 d2e98f9 19d1d68 eb3dc19 5d7f7a8 19d1d68 5d7f7a8 4f668f2 19d1d68 4f668f2 c1d7cbf b2339e2 8b4f062 b2339e2 c1d7cbf 5d7f7a8 e51517c bae9ed4 5d7f7a8 e51517c 5d7f7a8 e51517c 5d7f7a8 e51517c bae9ed4 e51517c 5d7f7a8 e51517c 5d7f7a8 8e39f71 19d1d68 8e39f71 5d7f7a8 8e39f71 e51517c 5d7f7a8 44aa7a0 bae9ed4 e51517c 44aa7a0 bae9ed4 44aa7a0 19d1d68 5d7f7a8 399f83d 5d7f7a8 de643b8 b2339e2 1205bb5 b2339e2 5d7f7a8 e51517c 8e39f71 5d7f7a8 4f668f2 5d7f7a8 4f668f2 5d7f7a8 19d1d68 5d7f7a8 8e39f71 19d1d68 5d7f7a8 e51517c 5d7f7a8 e51517c 5d7f7a8 e51517c 8e39f71 e51517c 5d7f7a8 e35db16 eb3dc19 bae9ed4 eb3dc19 741a123 eb3dc19 741a123 e35db16 eb3dc19 e35db16 741a123 eb3dc19 e35db16 eb3dc19 e35db16 eb3dc19 bae9ed4 5d7f7a8 eb3dc19 5d7f7a8 bae9ed4 5d7f7a8 e51517c 5d7f7a8 12e9ab7 e51517c 12e9ab7 e51517c 5d7f7a8 e86b678 5d7f7a8 e51517c 12e9ab7 5e57630 5d7f7a8 12e9ab7 5d7f7a8 12e9ab7 5d7f7a8 12e9ab7 5d7f7a8 12e9ab7 5d7f7a8 4d557d2 5d7f7a8 32cad41 e51517c 5d7f7a8 32cad41 5d7f7a8 32cad41 5d7f7a8 32cad41 5d7f7a8 32cad41 5d7f7a8 e51517c 32cad41 bae9ed4 e35db16 bae9ed4 32cad41 91a1a15 32cad41 399f83d 32cad41 5d7f7a8 bae9ed4 eb3dc19 bae9ed4 eb3dc19 bae9ed4 eb3dc19 bae9ed4 eb3dc19 bae9ed4 eb3dc19 bae9ed4 eb3dc19 bae9ed4 5d7f7a8 e51517c 5d7f7a8 bae9ed4 5d7f7a8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 |
import gradio as gr
import os
import yaml
import json
import random
import re
from datasets import load_dataset, get_dataset_config_names, get_dataset_split_names
from openai import OpenAI
from openevolve import run_evolution
from typing import Dict, List, Tuple, Optional
import tempfile
import shutil
import requests
import glob
# Free models from OpenRouter - Curated selection (verified as of 2025)
# IMPORTANT: The :free suffix is REQUIRED to use the free tier. Without it, requests are charged!
FREE_MODELS = [
"qwen/qwen-2.5-72b-instruct:free", # 72B - Strong in coding/math/multilingual (default - better rate limits)
"meta-llama/llama-3.3-70b-instruct:free", # 70B - Advanced reasoning
"google/gemma-3-27b-it:free", # 27B - Strong instruction-tuned
"mistralai/mistral-small-3.1-24b-instruct:free", # 24B - Efficient and capable
"deepseek/deepseek-r1:free", # 671B (37B active) - Top-tier but heavily rate-limited
"meta-llama/llama-3.2-3b-instruct", # 3B - PAID but very cheap fallback when free models hit rate limits
]
def validate_dataset(dataset_name: str, split: str, input_field: str, target_field: str) -> Tuple[bool, str]:
"""
Validate that the dataset exists and has the required fields.
Returns:
Tuple of (is_valid, error_message)
"""
try:
# Check if dataset name has correct format (should be org/name or just name)
if not dataset_name or dataset_name.strip() == "":
return False, "โ Dataset name cannot be empty"
dataset_name = dataset_name.strip()
# Try to get dataset info from HuggingFace API
hf_token = os.environ.get("HF_TOKEN", None)
headers = {}
if hf_token:
headers["Authorization"] = f"Bearer {hf_token}"
# Check if dataset exists on HuggingFace Hub
api_url = f"https://huggingface.co/api/datasets/{dataset_name}"
response = requests.get(api_url, headers=headers, timeout=10)
if response.status_code == 404:
return False, f"โ Dataset '{dataset_name}' not found on HuggingFace Hub. Please use the full dataset name (e.g., 'stanfordnlp/imdb' or 'gsm8k')"
elif response.status_code != 200:
# Try to load anyway - might be a private dataset or API issue
print(f"Warning: Could not verify dataset via API (status {response.status_code}), attempting to load...")
# Try to load a small sample to verify it works and check fields
print(f"Loading dataset {dataset_name} with split {split}...")
# First, check if the split exists
try:
available_splits = get_dataset_split_names(dataset_name)
if split not in available_splits:
return False, f"โ Split '{split}' not found. Available splits: {', '.join(available_splits)}"
except Exception as e:
print(f"Could not get split names: {e}. Will try to load anyway...")
# Load a small sample to check fields
# Try loading with just dataset name first
try:
dataset = load_dataset(dataset_name, split=split, streaming=True)
except ValueError as e:
# If it fails with config error, try common configs
if "config" in str(e).lower() or "Config name is missing" in str(e):
# Try common configs based on dataset name
default_config = "main"
if dataset_name.lower() == "glue":
default_config = "sst2"
print(f"Dataset requires config, trying with '{default_config}' config...")
try:
dataset = load_dataset(dataset_name, default_config, split=split, streaming=True)
except:
# If default config doesn't work, raise the original error
raise e
else:
raise
# Get first example to check fields
first_example = next(iter(dataset))
available_fields = list(first_example.keys())
# Check if input field exists
if input_field not in available_fields:
return False, f"โ Input field '{input_field}' not found. Available fields: {', '.join(available_fields)}"
# Check if target field exists
if target_field not in available_fields:
return False, f"โ Target field '{target_field}' not found. Available fields: {', '.join(available_fields)}"
# All validations passed
return True, f"โ
Dataset validated successfully! Fields '{input_field}' and '{target_field}' found."
except Exception as e:
error_msg = str(e)
if "404" in error_msg or "not found" in error_msg.lower():
return False, f"โ Dataset '{dataset_name}' not found. Please check the dataset name (use format: org/dataset-name)"
return False, f"โ Error validating dataset: {error_msg}"
def validate_inputs(dataset_name: str, split: str, input_field: str, target_field: str,
initial_prompt: str) -> Tuple[bool, str]:
"""
Validate all inputs before starting optimization.
Returns:
Tuple of (is_valid, message)
"""
# Check API key
api_key = os.environ.get("OPENAI_API_KEY")
if not api_key:
return False, "โ OPENAI_API_KEY environment variable not set. Please set it in the Space secrets."
# Check prompt contains {input} placeholder
if "{input}" not in initial_prompt:
return False, "โ Prompt must contain '{input}' placeholder for dataset inputs"
# Check dataset name format
dataset_name = dataset_name.strip()
if not dataset_name:
return False, "โ Dataset name cannot be empty"
# Validate dataset and fields
is_valid, message = validate_dataset(dataset_name, split, input_field, target_field)
if not is_valid:
return False, message
return True, message
def evaluate_prompt(prompt: str, dataset_name: str, split: str, num_samples: int,
model: str, input_field: str, target_field: str,
fixed_indices: List[int] = None) -> Dict:
"""
Evaluate a prompt on a dataset using the selected model.
Args:
fixed_indices: Optional list of dataset indices to use. If provided,
ensures we evaluate on the SAME samples every time.
"""
try:
# Get API key from environment
api_key = os.environ.get("OPENAI_API_KEY")
if not api_key:
return {
"error": "OPENAI_API_KEY not set in environment",
"accuracy": 0,
"correct": 0,
"total": 0,
"results": []
}
# Load dataset
# Try loading with just dataset name first
try:
dataset = load_dataset(dataset_name, split=split, streaming=False)
except ValueError as e:
# If it fails with config error, try common configs
if "config" in str(e).lower() or "Config name is missing" in str(e):
# Try common configs based on dataset name
default_config = "main"
if dataset_name.lower() == "glue":
default_config = "sst2"
dataset = load_dataset(dataset_name, default_config, split=split, streaming=False)
else:
raise
# Sample examples - use fixed indices if provided to ensure consistency
if fixed_indices is not None:
# Use the provided indices (ensures same samples for initial/final eval)
indices = fixed_indices
samples = [dataset[i] for i in indices]
elif len(dataset) > num_samples:
# First time: use fixed seed for reproducible sampling
random.seed(42) # Fixed seed ensures same samples across runs
indices = random.sample(range(len(dataset)), num_samples)
samples = [dataset[i] for i in indices]
else:
indices = list(range(min(num_samples, len(dataset))))
samples = list(dataset)[:num_samples]
# Initialize OpenAI client with OpenRouter
client = OpenAI(
base_url="https://openrouter.ai/api/v1",
api_key=api_key,
)
correct = 0
total = 0
results = []
errors = []
for idx, sample in enumerate(samples):
try:
# Get input and target
input_text = sample.get(input_field, "")
if isinstance(input_text, dict):
input_text = str(input_text)
target = sample.get(target_field, "")
if isinstance(target, dict):
target = str(target)
# Format the prompt with the input
formatted_prompt = prompt.replace("{input}", str(input_text))
# Call the model
response = client.chat.completions.create(
model=model,
messages=[
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": formatted_prompt}
],
temperature=0.0,
max_tokens=500,
)
prediction = response.choices[0].message.content.strip()
# Smart evaluation - handle both math and text answers
target_str = str(target).strip()
pred_str = prediction.strip()
def extract_answer(text):
"""Extract answer from text - handles GSM8K format and general text"""
# GSM8K format: "#### NUMBER" at the end
if "####" in text:
parts = text.split("####")
if len(parts) > 1:
answer_part = parts[-1].strip()
# Remove comma separators (1,000 -> 1000)
answer_part = answer_part.replace(',', '')
return answer_part
# Try to extract last number from free-form text
numbers = re.findall(r'-?\d+(?:,\d{3})*(?:\.\d+)?', text)
if numbers:
# Return the last number found (usually the final answer)
return numbers[-1].replace(',', '')
return text
def is_mathematically_equal(str1, str2):
"""Check if two strings represent the same mathematical value"""
try:
# Try to convert both to floats and compare
num1 = float(str1.replace(',', ''))
num2 = float(str2.replace(',', ''))
# Use small epsilon for float comparison
return abs(num1 - num2) < 1e-6
except (ValueError, AttributeError):
# If conversion fails, do string comparison
return str1.lower().strip() == str2.lower().strip()
# Extract answers
target_answer = extract_answer(target_str)
pred_answer = extract_answer(pred_str)
# Check if answers match mathematically or textually
is_correct = is_mathematically_equal(target_answer, pred_answer)
# Fallback: check for semantic equivalents for sentiment analysis
if not is_correct:
target_lower = target_answer.lower()
pred_lower = pred_answer.lower()
# Sentiment mappings with expanded synonyms
positive_words = ["positive", "good", "great", "excellent", "wonderful", "fantastic",
"amazing", "love", "best", "1", "pos", "admiration", "appreciation",
"praise", "favorable", "approve"]
negative_words = ["negative", "bad", "poor", "terrible", "awful", "worst", "hate",
"0", "neg", "criticism", "disdain", "disapproval", "unfavorable",
"critique", "condemn", "sarcasm"]
if target_lower in ["1", "positive", "pos"]:
is_correct = any(word in pred_lower for word in positive_words)
elif target_lower in ["0", "negative", "neg"]:
is_correct = any(word in pred_lower for word in negative_words)
if is_correct:
correct += 1
total += 1
results.append({
"input": str(input_text)[:100] + "..." if len(str(input_text)) > 100 else str(input_text),
"target": str(target),
"prediction": prediction[:100] + "..." if len(prediction) > 100 else prediction,
"correct": is_correct
})
except Exception as e:
error_msg = f"Sample {idx+1}: {str(e)}"
print(f"Error evaluating sample {idx+1}: {e}")
errors.append(error_msg)
# Only continue if we haven't failed on all samples
if len(errors) > len(samples) // 2: # More than half failed
print(f"Too many errors ({len(errors)} out of {len(samples)}), stopping evaluation")
break
continue
accuracy = (correct / total * 100) if total > 0 else 0
result_dict = {
"accuracy": accuracy,
"correct": correct,
"total": total,
"results": results,
"indices": indices # Return indices so we can reuse them for final eval
}
# Add errors if any occurred
if errors:
result_dict["errors"] = errors
if total == 0:
# All samples failed - create a helpful error message
result_dict["error"] = f"All {len(samples)} samples failed to evaluate. First few errors:\n" + "\n".join(errors[:3])
return result_dict
except Exception as e:
return {
"error": str(e),
"accuracy": 0,
"correct": 0,
"total": 0,
"results": []
}
def collect_prompt_history(output_dir: str, initial_score: float = 0.0) -> List[Dict]:
"""
Collect only the prompts that were "best" at some point during evolution.
Returns only programs that improved upon the initial score (deduplicated).
Args:
output_dir: Directory containing checkpoint data
initial_score: Score of the initial prompt (baseline to beat)
Returns a list of dicts with: {prompt, score, iteration, id}
"""
try:
all_programs = []
seen_prompts = set() # Track unique prompts
# OpenEvolve saves programs in checkpoint directories as JSON files
# Structure: output_dir/checkpoints/checkpoint_{iteration}/programs/{program_id}.json
checkpoints_dir = os.path.join(output_dir, "checkpoints")
if not os.path.exists(checkpoints_dir):
return []
# Find all checkpoint directories
checkpoint_dirs = sorted(glob.glob(os.path.join(checkpoints_dir, "checkpoint_*")))
# Collect all programs from all checkpoints
for checkpoint_dir in checkpoint_dirs:
programs_dir = os.path.join(checkpoint_dir, "programs")
if not os.path.exists(programs_dir):
continue
# Read all program JSON files
program_files = glob.glob(os.path.join(programs_dir, "*.json"))
for pfile in program_files:
try:
with open(pfile, 'r') as f:
program_data = json.load(f)
# Extract the code (prompt) from the program data
prompt_content = program_data.get("code", "").strip()
prog_id = program_data.get("id", os.path.basename(pfile).replace(".json", ""))
iteration = program_data.get("iteration_found", 0)
metrics = program_data.get("metrics", {})
# Get combined score for comparison
combined_score = metrics.get("combined_score", 0.0)
all_programs.append({
"prompt": prompt_content,
"id": prog_id,
"file": pfile,
"iteration": iteration,
"metrics": metrics,
"score": combined_score
})
except Exception as e:
print(f"Error reading program file {pfile}: {e}")
continue
# Sort all programs by iteration (chronological order)
all_programs.sort(key=lambda x: x.get("iteration", 0))
# Filter to keep only programs that improved the best score
# Start from the initial score as the baseline
best_programs = []
current_best_score = initial_score
for program in all_programs:
prompt_content = program["prompt"]
score = program["score"]
iteration = program["iteration"]
# Skip iteration 0 (that's the initial prompt, already added separately)
if iteration == 0:
continue
# Create a normalized version for duplicate detection (ignore whitespace differences)
normalized_prompt = " ".join(prompt_content.split())
# Skip duplicates
if normalized_prompt in seen_prompts:
continue
# Only keep if this program improved the best score
if score > current_best_score:
seen_prompts.add(normalized_prompt)
best_programs.append(program)
improvement = score - current_best_score
print(f" โ Best program at iteration {iteration}: score={score:.2%} (improved by +{improvement:.2%})")
current_best_score = score
return best_programs
except Exception as e:
print(f"Error collecting prompt history: {e}")
return []
def parse_evolution_history(output_dir: str) -> str:
"""
Parse evolution history from OpenEvolve output directory.
Returns a markdown string with visualization of the evolution process.
"""
try:
evolution_viz = "## ๐งฌ Evolution Progress\n\n"
# Look for generation files or logs
generation_files = sorted(glob.glob(os.path.join(output_dir, "generation_*.txt")))
log_file = os.path.join(output_dir, "evolution.log")
# Try to parse generation files if they exist
if generation_files:
evolution_viz += "### Generation-by-Generation Progress\n\n"
for gen_file in generation_files:
gen_num = os.path.basename(gen_file).replace("generation_", "").replace(".txt", "")
try:
with open(gen_file, 'r') as f:
content = f.read()
evolution_viz += f"**Generation {gen_num}:**\n```\n{content[:200]}{'...' if len(content) > 200 else ''}\n```\n\n"
except:
pass
# Try to parse log file
elif os.path.exists(log_file):
evolution_viz += "### Evolution Log\n\n"
try:
with open(log_file, 'r') as f:
log_content = f.read()
evolution_viz += f"```\n{log_content[-1000:]}\n```\n\n"
except:
pass
# Look for scores or history file
scores_file = os.path.join(output_dir, "scores.json")
if os.path.exists(scores_file):
try:
with open(scores_file, 'r') as f:
scores = json.load(f)
evolution_viz += "### Score Progression\n\n"
evolution_viz += "| Generation | Best Score | Avg Score | Population |\n"
evolution_viz += "|------------|-----------|-----------|------------|\n"
for gen in scores:
evolution_viz += f"| {gen['generation']} | {gen['best']:.3f} | {gen['avg']:.3f} | {gen['population']} |\n"
evolution_viz += "\n"
except:
pass
# Look for all program variants
program_files = sorted(glob.glob(os.path.join(output_dir, "program_*.txt")))
if program_files:
evolution_viz += f"### Explored Variants\n\n"
evolution_viz += f"OpenEvolve explored {len(program_files)} different prompt variants during evolution.\n\n"
# Show a few intermediate prompts
if len(program_files) > 3:
sample_files = [program_files[0], program_files[len(program_files)//2], program_files[-2]]
evolution_viz += "**Sample Intermediate Prompts:**\n\n"
for idx, pfile in enumerate(sample_files, 1):
try:
with open(pfile, 'r') as f:
prompt_content = f.read()
evolution_viz += f"**Variant {idx}:**\n```\n{prompt_content[:150]}{'...' if len(prompt_content) > 150 else ''}\n```\n\n"
except:
pass
# If no specific files found, show directory contents
if not generation_files and not os.path.exists(log_file) and not os.path.exists(scores_file):
evolution_viz += "### Evolution Complete\n\n"
evolution_viz += "OpenEvolve ran 10 iterations of evolutionary optimization using:\n"
evolution_viz += "- **Population Size**: 10 prompts per generation\n"
evolution_viz += "- **Selection Strategy**: 10% elite, 30% explore, 60% exploit\n"
evolution_viz += "- **Islands**: 1 population with mutation and crossover\n"
evolution_viz += "- **Evaluation**: 100 samples per prompt variant\n\n"
# Count files in output directory
all_files = os.listdir(output_dir)
evolution_viz += f"Generated {len(all_files)} files during evolution process.\n\n"
return evolution_viz
except Exception as e:
return f"## ๐งฌ Evolution Progress\n\nEvolution completed successfully. Unable to parse detailed history: {str(e)}\n\n"
def create_evaluator_file(dataset_name: str, split: str, model: str,
input_field: str, target_field: str, work_dir: str):
"""Create an evaluator.py file for OpenEvolve with staged/cascading evaluation."""
evaluator_code = f'''
import os
import random
from datasets import load_dataset
from openai import OpenAI
def evaluate(prompt: str) -> dict:
"""
Evaluate a prompt using 2-stage cascading evaluation to save API calls.
Stage 1: Evaluate with 50 samples
- If accuracy >= 0.5, proceed to Stage 2
- If accuracy < 0.5, return early (no point wasting 200 more samples)
Stage 2: Evaluate with 200 more samples (total 250)
- Combine results for final score
Returns dict with combined_score (0-1), accuracy, correct, and total.
"""
try:
# IMPORTANT: Use fixed seed for consistent sampling across all evaluations
random.seed(42)
# Load dataset
# Try loading with just dataset name first
try:
dataset = load_dataset("{dataset_name}", split="{split}", streaming=False)
except ValueError as e:
# If it fails with config error, try common configs
if "config" in str(e).lower() or "Config name is missing" in str(e):
# Try common configs based on dataset name
default_config = "main"
if "{dataset_name}".lower() == "glue":
default_config = "sst2"
dataset = load_dataset("{dataset_name}", default_config, split="{split}", streaming=False)
else:
raise
# Initialize OpenAI client
api_key = os.environ.get("OPENAI_API_KEY")
client = OpenAI(
base_url="https://openrouter.ai/api/v1",
api_key=api_key,
)
def evaluate_samples(samples, correct_so_far=0, total_so_far=0):
"""Helper function to evaluate a batch of samples."""
correct = correct_so_far
total = total_so_far
for sample in samples:
try:
# Get input and target
input_text = sample.get("{input_field}", "")
if isinstance(input_text, dict):
input_text = str(input_text)
target = sample.get("{target_field}", "")
if isinstance(target, dict):
target = str(target)
# Format the prompt
formatted_prompt = prompt.replace("{{input}}", str(input_text))
# Call the model
response = client.chat.completions.create(
model="{model}",
messages=[
{{"role": "system", "content": "You are a helpful assistant."}},
{{"role": "user", "content": formatted_prompt}}
],
temperature=0.0,
max_tokens=500,
)
prediction = response.choices[0].message.content.strip()
# Smart evaluation - handle both math and text answers
target_str = str(target).strip()
pred_str = prediction.strip()
def extract_answer(text):
"""Extract answer from text - handles GSM8K format and general text"""
import re
# GSM8K format: "#### NUMBER" at the end
if "####" in text:
parts = text.split("####")
if len(parts) > 1:
answer_part = parts[-1].strip()
# Remove comma separators (1,000 -> 1000)
answer_part = answer_part.replace(',', '')
return answer_part
# Try to extract last number from free-form text
numbers = re.findall(r'-?\\d+(?:,\\d{{3}})*(?:\\.\\d+)?', text)
if numbers:
# Return the last number found (usually the final answer)
return numbers[-1].replace(',', '')
return text
def is_mathematically_equal(str1, str2):
"""Check if two strings represent the same mathematical value"""
try:
# Try to convert both to floats and compare
num1 = float(str1.replace(',', ''))
num2 = float(str2.replace(',', ''))
# Use small epsilon for float comparison
return abs(num1 - num2) < 1e-6
except (ValueError, AttributeError):
# If conversion fails, do string comparison
return str1.lower().strip() == str2.lower().strip()
# Extract answers
target_answer = extract_answer(target_str)
pred_answer = extract_answer(pred_str)
# Check if answers match mathematically or textually
is_correct = is_mathematically_equal(target_answer, pred_answer)
# Fallback: check for semantic equivalents for sentiment analysis
if not is_correct:
target_lower = target_answer.lower()
pred_lower = pred_answer.lower()
# Sentiment mappings with expanded synonyms
positive_words = ["positive", "good", "great", "excellent", "wonderful", "fantastic",
"amazing", "love", "best", "1", "pos", "admiration", "appreciation",
"praise", "favorable", "approve"]
negative_words = ["negative", "bad", "poor", "terrible", "awful", "worst", "hate",
"0", "neg", "criticism", "disdain", "disapproval", "unfavorable",
"critique", "condemn", "sarcasm"]
if target_lower in ["1", "positive", "pos"]:
is_correct = any(word in pred_lower for word in positive_words)
elif target_lower in ["0", "negative", "neg"]:
is_correct = any(word in pred_lower for word in negative_words)
if is_correct:
correct += 1
total += 1
except Exception as e:
print(f"Error evaluating sample: {{e}}")
continue
return correct, total
# STAGE 1: Evaluate with 50 samples first
stage1_size = 50
stage1_samples_count = min(stage1_size, len(dataset))
if len(dataset) > stage1_samples_count:
stage1_indices = random.sample(range(len(dataset)), stage1_samples_count)
stage1_samples = [dataset[i] for i in stage1_indices]
else:
stage1_samples = list(dataset)[:stage1_samples_count]
print(f"[Stage 1/2] Evaluating with {{len(stage1_samples)}} samples...")
correct, total = evaluate_samples(stage1_samples)
stage1_score = (correct / total) if total > 0 else 0.0
print(f"[Stage 1/2] Score: {{stage1_score:.3f}} ({{correct}}/{{total}})")
# Early exit if Stage 1 score is below threshold
if stage1_score < 0.5:
print(f"[Stage 1/2] Score below 0.5 threshold - skipping Stage 2 (saved 200 API calls)")
return {{
"combined_score": stage1_score,
"accuracy": stage1_score,
"correct": correct,
"total": total,
"stage": "stage1_early_exit"
}}
# STAGE 2: Continue with 200 more samples
print(f"[Stage 2/2] Score >= 0.5 - proceeding with 200 more samples...")
stage2_size = 200
stage2_samples_count = min(stage2_size, max(0, len(dataset) - stage1_samples_count))
if stage2_samples_count > 0:
# Get different samples from Stage 1
remaining_indices = list(set(range(len(dataset))) - set(stage1_indices if 'stage1_indices' in locals() else []))
if len(remaining_indices) >= stage2_samples_count:
stage2_indices = random.sample(remaining_indices, stage2_samples_count)
stage2_samples = [dataset[i] for i in stage2_indices]
else:
stage2_samples = [dataset[i] for i in remaining_indices[:stage2_samples_count]]
correct, total = evaluate_samples(stage2_samples, correct, total)
final_score = (correct / total) if total > 0 else stage1_score
print(f"[Stage 2/2] Final score: {{final_score:.3f}} ({{correct}}/{{total}})")
return {{
"combined_score": final_score,
"accuracy": final_score,
"correct": correct,
"total": total,
"stage": "stage2_complete"
}}
else:
print(f"[Stage 2/2] Not enough samples in dataset for Stage 2")
return {{
"combined_score": stage1_score,
"accuracy": stage1_score,
"correct": correct,
"total": total,
"stage": "stage1_complete"
}}
except Exception as e:
print(f"Error in evaluation: {{e}}")
return {{
"combined_score": 0.0,
"accuracy": 0.0,
"correct": 0,
"total": 0,
"error": str(e)
}}
'''
evaluator_path = os.path.join(work_dir, "evaluator.py")
with open(evaluator_path, "w") as f:
f.write(evaluator_code)
return evaluator_path
def create_config_file(model: str, work_dir: str):
"""Create a config.yaml file for OpenEvolve."""
# Create custom templates directory for prompt optimization
templates_dir = os.path.join(work_dir, "templates")
os.makedirs(templates_dir, exist_ok=True)
# Create custom system template for PROMPT optimization (not code)
system_template = """You are an expert prompt engineer tasked with iteratively improving prompts for language models.
Your job is to analyze the current prompt and suggest improvements based on performance feedback.
Focus on making the prompt clearer, more specific, and more effective at achieving its goal.
Consider:
- Clarity and specificity of instructions
- Examples and demonstrations that guide the model
- Formatting that makes the prompt easier to follow
- Edge cases and error handling in the instructions
"""
with open(os.path.join(templates_dir, "system_message.txt"), "w") as f:
f.write(system_template)
# Create custom user template for prompt rewriting
user_template = """# Current Prompt Performance
- Current metrics: {metrics}
- Areas for improvement: {improvement_areas}
{artifacts}
# Prompt Evolution History
{evolution_history}
# Current Prompt
```text
{current_program}
```
# Task
Rewrite the prompt above to improve its performance on the specified metrics.
Provide a complete new version of the prompt that:
1. Maintains the same input/output format (keep placeholders like {{input}}, {{text}}, etc.)
2. Improves clarity and effectiveness
3. Adds helpful examples or instructions if beneficial
4. Is more likely to get correct results
Output ONLY the new prompt text between ```text markers:
```text
Your improved prompt here
```
"""
with open(os.path.join(templates_dir, "full_rewrite_user.txt"), "w") as f:
f.write(user_template)
config = {
"llm": {
"primary_model": model,
"api_base": "https://openrouter.ai/api/v1", # Use OpenRouter endpoint
"temperature": 0.7,
},
"max_iterations": 10,
"checkpoint_interval": 2, # Save checkpoints every 2 iterations to preserve prompt history
"diff_based_evolution": False, # Use full rewrite mode for prompts (not diff/patch mode)
"language": "text", # CRITICAL: Optimize text/prompts, not Python code!
"max_code_length": 40000, # Allow long prompts (default 10000 is too short)
"num_islands": 1, # IMPORTANT: Use only 1 island (not 5) for simpler evolution
"prompt": {
"template_dir": templates_dir, # Use our custom prompt engineering templates
},
"evolution": {
"population_size": 10,
"num_islands": 1, # Single island for simpler evolution
"elite_ratio": 0.1,
"explore_ratio": 0.3,
"exploit_ratio": 0.6,
},
"database": {
"log_prompts": True, # Save prompts used to generate each program
"num_islands": 1, # CRITICAL: This is where island count is actually read from!
},
"evaluator": {
"timeout": 3600, # 1 hour timeout (effectively disabled, but prevents NoneType arithmetic errors)
"cascade_evaluation": False, # Disable cascade to prevent signal errors
"parallel_evaluations": 1, # Single worker to avoid multiprocessing complexity
"distributed": False, # No distributed processing
}
}
config_path = os.path.join(work_dir, "config.yaml")
with open(config_path, "w") as f:
yaml.dump(config, f)
return config_path
def optimize_prompt(initial_prompt: str, dataset_name: str, dataset_split: str,
model: str, input_field: str, target_field: str,
progress=gr.Progress()) -> Tuple[str, str, str, str, List[str], int, int]:
"""Run OpenEvolve to optimize the prompt."""
progress(0, desc="Validating inputs...")
# Validate all inputs
is_valid, validation_message = validate_inputs(
dataset_name, dataset_split, input_field, target_field, initial_prompt
)
if not is_valid:
return f"## Validation Failed\n\n{validation_message}", "", "", "", [], 0, 0
progress(0.05, desc=f"Validation passed: {validation_message}")
# Create temporary working directory
work_dir = tempfile.mkdtemp(prefix="openevolve_")
try:
# Save initial prompt
initial_prompt_path = os.path.join(work_dir, "initial_prompt.txt")
with open(initial_prompt_path, "w") as f:
f.write(initial_prompt)
# Create evaluator
progress(0.1, desc="Creating evaluator...")
evaluator_path = create_evaluator_file(dataset_name, dataset_split, model,
input_field, target_field, work_dir)
# Create config
progress(0.15, desc="Creating configuration...")
config_path = create_config_file(model, work_dir)
# Run initial evaluation (using 20 samples to save API calls)
# IMPORTANT: We save the indices to ensure final eval uses THE SAME samples
progress(0.2, desc="Running initial evaluation on 20 samples...")
initial_eval = evaluate_prompt(
initial_prompt, dataset_name, dataset_split, 20,
model, input_field, target_field
)
if "error" in initial_eval:
return f"## Error\n\nโ Initial evaluation failed: {initial_eval['error']}", "", "", "", [initial_prompt], 0, 1
if initial_eval["total"] == 0:
return f"## Error\n\nโ Initial evaluation failed: No samples could be evaluated. This usually means:\n- API key is invalid or has no credits\n- Model is unavailable or rate-limited\n- Dataset fields are incorrect\n- Network connectivity issues\n\nPlease check your configuration and try again.", "", "", "", [initial_prompt], 0, 1
# Save the indices for final evaluation (ensures fair comparison)
eval_indices = initial_eval.get("indices", [])
initial_results = f"""
### Initial Prompt Evaluation
**Prompt:**
```
{initial_prompt}
```
**Results:**
- Accuracy: {initial_eval['accuracy']:.2f}%
- Correct: {initial_eval['correct']}/{initial_eval['total']}
**Sample Results:**
"""
for i, result in enumerate(initial_eval['results'][:5], 1):
initial_results += f"\n{i}. Input: {result['input']}\n"
initial_results += f" Target: {result['target']}\n"
initial_results += f" Prediction: {result['prediction']}\n"
initial_results += f" โ Correct\n" if result['correct'] else f" โ Incorrect\n"
# Run OpenEvolve
progress(0.3, desc="Starting OpenEvolve optimization (10 iterations with staged evaluation)...")
output_dir = os.path.join(work_dir, "output")
os.makedirs(output_dir, exist_ok=True)
try:
# Comprehensive fix for "signal only works in main thread" in Gradio
# We need to prevent OpenEvolve from using signal handlers entirely
# Step 1: Set environment variable to disable process pool
import os as os_env
os_env.environ['OPENEVOLVE_NO_PARALLEL'] = '1'
# Step 2: Monkey-patch signal module to ignore signal calls in threads
import signal
import threading
original_signal = signal.signal
def safe_signal(signum, handler):
"""Only set signal handlers in main thread"""
if threading.current_thread() is threading.main_thread():
return original_signal(signum, handler)
else:
# Return a dummy handler in non-main threads
return signal.SIG_DFL
signal.signal = safe_signal
# Run evolution with signal patch in place
result = run_evolution(
initial_program=initial_prompt_path,
evaluator=evaluator_path,
config=config_path,
output_dir=output_dir
)
# Restore signal handler
signal.signal = original_signal
progress(0.80, desc="Parsing evolution history...")
# Parse evolution history for visualization
evolution_viz = parse_evolution_history(output_dir)
progress(0.85, desc="Evaluating best evolved prompt on 20 samples...")
# Get the best prompt (OpenEvolve saves to output_dir/best/best_program.txt)
best_prompt_path = os.path.join(output_dir, "best", "best_program.txt")
if os.path.exists(best_prompt_path):
with open(best_prompt_path, "r") as f:
best_prompt = f.read()
else:
# Fallback: try without the "best" subdirectory
best_prompt_path_alt = os.path.join(output_dir, "best_program.txt")
if os.path.exists(best_prompt_path_alt):
with open(best_prompt_path_alt, "r") as f:
best_prompt = f.read()
else:
best_prompt = initial_prompt
# Evaluate best prompt on THE SAME samples as initial eval (fair comparison)
final_eval = evaluate_prompt(
best_prompt, dataset_name, dataset_split, 20,
model, input_field, target_field,
fixed_indices=eval_indices # Use same samples as initial eval!
)
final_results = f"""
### Evolved Prompt Evaluation
**Prompt:**
```
{best_prompt}
```
**Results:**
- Accuracy: {final_eval['accuracy']:.2f}%
- Correct: {final_eval['correct']}/{final_eval['total']}
- Improvement: {final_eval['accuracy'] - initial_eval['accuracy']:+.2f}%
**Sample Results:**
"""
for i, result in enumerate(final_eval['results'][:5], 1):
final_results += f"\n{i}. Input: {result['input']}\n"
final_results += f" Target: {result['target']}\n"
final_results += f" Prediction: {result['prediction']}\n"
final_results += f" โ Correct\n" if result['correct'] else f" โ Incorrect\n"
summary = f"""
## ๐ Optimization Complete!
### Summary
- **Dataset**: {dataset_name} ({dataset_split} split)
- **Model**: {model}
- **Initial/Final Eval**: 20 samples each
- **Evolution Eval**: Staged (20 โ 100 if score โฅ 0.5)
- **Iterations**: 10
### Results
- **Initial Accuracy**: {initial_eval['accuracy']:.2f}%
- **Final Accuracy**: {final_eval['accuracy']:.2f}%
- **Improvement**: {final_eval['accuracy'] - initial_eval['accuracy']:+.2f}%
{validation_message}
"""
progress(1.0, desc="Complete!")
# Collect only the "best" prompts - ones that improved the score during evolution
all_prompts = []
# Add initial prompt
initial_score = initial_eval['accuracy'] / 100.0 # Convert to 0-1 scale
all_prompts.append({
"prompt": initial_prompt,
"score": initial_score,
"label": "Initial Prompt",
"iteration": 0
})
# Add evolved prompts (only programs that were "best" at some point)
# Pass initial_score so we only show programs that BEAT the initial prompt
prompt_history = collect_prompt_history(output_dir, initial_score=initial_score)
for i, p in enumerate(prompt_history):
# Skip if it's the same as initial (shouldn't happen, but just in case)
if i == 0 and p.get("iteration", -1) == 0:
continue
all_prompts.append({
"prompt": p["prompt"],
"score": p.get("score", 0.0),
"label": f"Best at Iteration {p.get('iteration', i+1)}",
"iteration": p.get("iteration", i+1)
})
return summary, initial_results, evolution_viz, final_results, all_prompts, 0, len(all_prompts)
except Exception as e:
# Return error with initial prompt in dict format
error_prompts = [{"prompt": initial_prompt, "score": 0.0, "label": "Initial Prompt"}]
return f"## Error During Evolution\n\nโ {str(e)}", initial_results, "", "", error_prompts, 0, 1
finally:
# Don't clean up - keep prompts for browsing
# User can manually clean /tmp if needed
pass
# Create Gradio interface
with gr.Blocks(title="OpenEvolve Prompt Optimizer", theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# ๐งฌ OpenEvolve Prompt Optimizer
Automatically evolve and optimize your prompts using evolutionary algorithms!
This space uses [OpenEvolve](https://github.com/algorithmicsuperintelligence/openevolve) to iteratively improve prompts
by testing them on real datasets and evolving better versions.
## How it works:
1. Enter an initial prompt (use `{input}` as a placeholder for dataset inputs)
2. Default dataset is **GSM8K** (grade school math) - great for showing prompt improvement!
3. Specify the dataset split and field names (or use other datasets like `glue`, `stanfordnlp/imdb`)
4. Choose a free model from OpenRouter
5. Click "Optimize Prompt" - the system will validate everything first!
6. Watch the evolution progress in real-time
7. Compare initial vs. evolved performance - uses 50 samples for stage 1, 200 for stage 2!
**Note**: API key is read from `OPENAI_API_KEY` environment variable (set in Space secrets)
""")
with gr.Row():
with gr.Column():
gr.Markdown("### Configuration")
model = gr.Dropdown(
choices=FREE_MODELS,
value=FREE_MODELS[0],
label="Select Model",
info="Choose from 5 curated free models on OpenRouter (24B to 671B parameters)"
)
dataset_name = gr.Textbox(
label="HuggingFace Dataset (Full Name)",
value="gsm8k",
placeholder="e.g., gsm8k, glue, stanfordnlp/imdb",
info="Dataset name from HuggingFace Hub. Configs auto-detected (e.g., 'glue' โ 'glue:sst2')"
)
dataset_split = gr.Textbox(
label="Dataset Split",
value="train",
placeholder="e.g., train, test, validation"
)
input_field = gr.Textbox(
label="Input Field Name",
value="question",
placeholder="e.g., question, sentence, text",
info="The field containing inputs to process"
)
target_field = gr.Textbox(
label="Target Field Name",
value="answer",
placeholder="e.g., answer, label, target",
info="The field containing expected outputs"
)
initial_prompt = gr.TextArea(
label="Initial Prompt",
value="{input}\n\nAnswer:",
lines=6,
info="Use {input} as placeholder for dataset inputs. Start simple - evolution will improve it!"
)
# Button outside the column for better visibility
with gr.Row():
with gr.Column():
optimize_btn = gr.Button("๐ Validate & Optimize Prompt", variant="primary", size="lg")
# Results section - clearly separated
gr.Markdown("---")
gr.Markdown("## ๐ Results")
with gr.Row():
with gr.Column():
summary = gr.Markdown("Click 'Validate & Optimize Prompt' to start optimization...", visible=True)
with gr.Row():
with gr.Column():
initial_results = gr.Markdown("### Initial Results\nWill appear here after validation...", visible=True)
with gr.Column():
final_results = gr.Markdown("### Final Results\nWill appear here after optimization...", visible=True)
with gr.Row():
with gr.Column():
evolution_progress = gr.Markdown("### Evolution Progress\nEvolution progress will appear here during optimization...", visible=True)
# Prompt History Browser
gr.Markdown("---")
gr.Markdown("## ๐ Prompt History Browser")
gr.Markdown("Browse through the progression of **best** prompts found during evolution. Only shows prompts that improved the score (no duplicates or intermediate programs).")
with gr.Row():
with gr.Column(scale=8):
prompt_display = gr.TextArea(
label="",
lines=10,
interactive=False,
placeholder="Prompts will appear here after optimization completes...",
show_label=False
)
with gr.Column(scale=2):
prompt_counter = gr.Markdown("**Prompt**: -/-")
prev_btn = gr.Button("โฌ
๏ธ Previous", size="sm")
next_btn = gr.Button("Next โก๏ธ", size="sm")
gr.Markdown("**Prompt Types:**\n- First = Initial\n- Middle = Intermediate\n- Last = Final Best")
# Hidden state to store prompt history and current index
prompt_history_state = gr.State([])
current_prompt_index = gr.State(0)
# Documentation section - in collapsible accordion
gr.Markdown("---")
with gr.Accordion("๐ Documentation & Examples", open=False):
gr.Markdown("""
### Example Datasets & Fields:
| Dataset | Split | Input Field | Target Field | Task |
|---------|-------|-------------|--------------|------|
| stanfordnlp/imdb | test | text | label | Sentiment Analysis |
| rajpurkar/squad | validation | question | answers | Question Answering |
| dair-ai/emotion | test | text | label | Emotion Classification |
| openai/gsm8k | test | question | answer | Math Reasoning |
| fancyzhx/ag_news | test | text | label | News Classification |
### About This Demo Space:
**This is a demonstration space** showcasing OpenEvolve's prompt optimization capabilities.
The interface shows you how the system works, but **you'll need to set up your own instance to run optimizations**.
### How to Run This Yourself:
1. **Clone this Space**: Click "โฎ" (three dots) at top-right โ "Duplicate this Space"
2. **Set Environment Variables** in your cloned Space's settings:
- `OPENAI_API_KEY`: Your OpenRouter API key (get free key at [openrouter.ai/keys](https://openrouter.ai/keys))
- `HF_TOKEN`: (Optional) HuggingFace token for private datasets
3. **Configure Your Optimization**:
- Dataset: Use full name format (e.g., `stanfordnlp/imdb` or `openai/gsm8k`)
- Fields: Specify exact field names from the dataset schema
- Model: Choose from 5 curated free models (larger models = better results but slower/rate-limited)
4. **Run & Monitor**:
- All inputs are validated before starting
- Evolution uses staged evaluation (20 samples first, then 80 more if promising)
- Saves API calls by early-stopping poor prompts (< 50% accuracy)
- Watch evolution progress visualization in real-time
### About OpenEvolve:
OpenEvolve is an open-source evolutionary optimization framework. Learn more at:
- [GitHub Repository](https://github.com/algorithmicsuperintelligence/openevolve)
- [Documentation](https://github.com/algorithmicsuperintelligence/openevolve#readme)
""")
# Navigation functions for prompt browser
def show_previous_prompt(prompts, current_idx):
if not prompts or len(prompts) == 0:
return "", "**Prompt**: -/-", 0
new_idx = max(0, current_idx - 1)
prompt_obj = prompts[new_idx]
# Handle both old string format and new dict format
if isinstance(prompt_obj, dict):
prompt_text = prompt_obj["prompt"]
score = prompt_obj.get("score", 0.0)
label = prompt_obj.get("label", "")
counter_text = f"**{label}** ({new_idx + 1}/{len(prompts)}) | Score: {score:.2%}"
else:
prompt_text = prompt_obj
counter_text = f"**Prompt**: {new_idx + 1}/{len(prompts)}"
return prompt_text, counter_text, new_idx
def show_next_prompt(prompts, current_idx):
if not prompts or len(prompts) == 0:
return "", "**Prompt**: -/-", 0
new_idx = min(len(prompts) - 1, current_idx + 1)
prompt_obj = prompts[new_idx]
# Handle both old string format and new dict format
if isinstance(prompt_obj, dict):
prompt_text = prompt_obj["prompt"]
score = prompt_obj.get("score", 0.0)
label = prompt_obj.get("label", "")
counter_text = f"**{label}** ({new_idx + 1}/{len(prompts)}) | Score: {score:.2%}"
else:
prompt_text = prompt_obj
counter_text = f"**Prompt**: {new_idx + 1}/{len(prompts)}"
return prompt_text, counter_text, new_idx
def update_prompt_display(prompts, idx, total):
if not prompts or len(prompts) == 0:
return "", "**Prompt**: -/-"
idx = min(idx, len(prompts) - 1)
prompt_obj = prompts[idx]
# Handle both old string format and new dict format
if isinstance(prompt_obj, dict):
prompt_text = prompt_obj["prompt"]
score = prompt_obj.get("score", 0.0)
label = prompt_obj.get("label", "")
counter_text = f"**{label}** ({idx + 1}/{len(prompts)}) | Score: {score:.2%}"
else:
prompt_text = prompt_obj
counter_text = f"**Prompt**: {idx + 1}/{len(prompts)}"
return prompt_text, counter_text
# Wire up the optimize button
optimize_result = optimize_btn.click(
fn=optimize_prompt,
inputs=[initial_prompt, dataset_name, dataset_split, model,
input_field, target_field],
outputs=[summary, initial_results, evolution_progress, final_results,
prompt_history_state, current_prompt_index, gr.State()] # dummy for total
)
# Update prompt display when optimization completes
optimize_result.then(
fn=update_prompt_display,
inputs=[prompt_history_state, current_prompt_index, gr.State()],
outputs=[prompt_display, prompt_counter]
)
# Wire up navigation buttons
prev_btn.click(
fn=show_previous_prompt,
inputs=[prompt_history_state, current_prompt_index],
outputs=[prompt_display, prompt_counter, current_prompt_index]
)
next_btn.click(
fn=show_next_prompt,
inputs=[prompt_history_state, current_prompt_index],
outputs=[prompt_display, prompt_counter, current_prompt_index]
)
if __name__ == "__main__":
demo.launch()
|