File size: 47,055 Bytes
5d7f7a8 ea59941 e51517c 5d7f7a8 e51517c 5d7f7a8 e51517c 5d7f7a8 653da52 5d7f7a8 e51517c 2f781ff 5e57630 2f781ff 5e57630 2f781ff 5e57630 2f781ff 5e57630 2f781ff e51517c 5d7f7a8 19d1d68 5d7f7a8 e51517c 5d7f7a8 2f781ff 5e57630 2f781ff 5e57630 2f781ff 5d7f7a8 19d1d68 5d7f7a8 19d1d68 5d7f7a8 44aa7a0 5d7f7a8 44aa7a0 5d7f7a8 653da52 5d7f7a8 359701c 9e6170e 653da52 9e6170e e99c626 359701c e99c626 9e6170e e99c626 9e6170e e99c626 9e6170e 399f83d 5d7f7a8 e51517c 5d7f7a8 e51517c 5d7f7a8 44aa7a0 5d7f7a8 44aa7a0 5d7f7a8 19d1d68 5d7f7a8 44aa7a0 5d7f7a8 741a123 bae9ed4 e35db16 741a123 bae9ed4 e35db16 eb3dc19 bae9ed4 4f668f2 bae9ed4 4f668f2 bae9ed4 4f668f2 bae9ed4 e35db16 4f668f2 bae9ed4 4f668f2 eb3dc19 4f668f2 eb3dc19 e35db16 4f668f2 eb3dc19 4f668f2 e35db16 741a123 e35db16 741a123 e35db16 741a123 e35db16 741a123 e35db16 4f668f2 bae9ed4 e51517c 7308434 e51517c 7308434 e51517c 5d7f7a8 1a53d87 5d7f7a8 653da52 5d7f7a8 8b4f062 399f83d 1a53d87 399f83d 062d7ee 1a53d87 653da52 399f83d 5d7f7a8 062d7ee 19d1d68 5d7f7a8 2f781ff 5e57630 2f781ff 5d7f7a8 1a53d87 f5714df 5d7f7a8 f5714df 653da52 5d7f7a8 f5714df 399f83d f5714df 399f83d f5714df 399f83d 062d7ee 399f83d 653da52 f5714df 359701c f5714df 9e6170e f5714df e99c626 359701c e99c626 f5714df e99c626 9e6170e e99c626 9e6170e f5714df 9e6170e f5714df 653da52 f5714df 653da52 f5714df 653da52 f5714df 062d7ee 769e325 f5714df 5d7f7a8 8b4f062 5d7f7a8 eb3dc19 a6a987d b9491fc eb3dc19 bc07d04 a6a987d d2bcbf6 bc07d04 eb3dc19 5d7f7a8 bc07d04 173eddc bc07d04 5d7f7a8 6981b70 7308434 0533c5a 48dd4e6 d2e98f9 19d1d68 eb3dc19 5d7f7a8 bc07d04 19d1d68 bc07d04 5d7f7a8 4f668f2 19d1d68 4f668f2 c1d7cbf b2339e2 8b4f062 b2339e2 c1d7cbf 5d7f7a8 e51517c 96e88bc 5d7f7a8 e51517c 5d7f7a8 e51517c 5d7f7a8 e51517c 96e88bc e51517c 5d7f7a8 062d7ee 5d7f7a8 062d7ee 5d7f7a8 062d7ee 5d7f7a8 e51517c 5d7f7a8 7308434 19d1d68 7308434 5d7f7a8 7308434 e51517c 5d7f7a8 44aa7a0 96e88bc e51517c 44aa7a0 96e88bc 44aa7a0 19d1d68 5d7f7a8 b9491fc 5d7f7a8 de643b8 b2339e2 1205bb5 b2339e2 5d7f7a8 e51517c 07d6b9d 5d7f7a8 4f668f2 5d7f7a8 062d7ee 769e325 062d7ee 769e325 5d7f7a8 4f668f2 062d7ee 769e325 062d7ee 769e325 4f668f2 769e325 5d7f7a8 7308434 5d7f7a8 7308434 19d1d68 7308434 5d7f7a8 424a3e8 07d6b9d 5d7f7a8 7308434 5d7f7a8 e51517c 5d7f7a8 e51517c 5d7f7a8 e51517c bc07d04 7308434 bc07d04 6981b70 e51517c 07d6b9d e51517c 5d7f7a8 96e88bc 5d7f7a8 96e88bc 5d7f7a8 bae9ed4 5d7f7a8 ca68dca 5d7f7a8 e51517c 93d757f 5d7f7a8 93d757f 5d7f7a8 93d757f 5d7f7a8 93d757f 5d7f7a8 69d4c01 93d757f 69d4c01 5d7f7a8 32cad41 e51517c 5d7f7a8 32cad41 5d7f7a8 32cad41 5d7f7a8 96e88bc bae9ed4 96e88bc bae9ed4 96e88bc bae9ed4 653da52 96e88bc 653da52 5d7f7a8 96e88bc 5d7f7a8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 |
import gradio as gr
import os
import yaml
import json
import random
import re
from datasets import load_dataset, get_dataset_config_names, get_dataset_split_names
from openai import OpenAI
from openevolve import run_evolution
from typing import Dict, List, Tuple, Optional
import tempfile
import shutil
import requests
import glob
# Model for OpenRouter
# Using paid llama-3.2-3b-instruct since free tier models have unreliable rate limits
MODELS = [
"meta-llama/llama-3.2-3b-instruct", # 3B - Reliable, fast, and very cheap ($0.04/$0.04 per 1M tokens)
]
def validate_dataset(dataset_name: str, split: str, input_field: str, target_field: str) -> Tuple[bool, str]:
"""
Validate that the dataset exists and has the required fields.
Returns:
Tuple of (is_valid, error_message)
"""
try:
# Check if dataset name has correct format (should be org/name or just name)
if not dataset_name or dataset_name.strip() == "":
return False, "β Dataset name cannot be empty"
dataset_name = dataset_name.strip()
# Try to get dataset info from HuggingFace API
hf_token = os.environ.get("HF_TOKEN", None)
headers = {}
if hf_token:
headers["Authorization"] = f"Bearer {hf_token}"
# Check if dataset exists on HuggingFace Hub
api_url = f"https://huggingface.co/api/datasets/{dataset_name}"
response = requests.get(api_url, headers=headers, timeout=10)
if response.status_code == 404:
return False, f"β Dataset '{dataset_name}' not found on HuggingFace Hub. Please use the full dataset name (e.g., 'stanfordnlp/imdb' or 'gsm8k')"
elif response.status_code != 200:
# Try to load anyway - might be a private dataset or API issue
print(f"Warning: Could not verify dataset via API (status {response.status_code}), attempting to load...")
# Try to load a small sample to verify it works and check fields
print(f"Loading dataset {dataset_name} with split {split}...")
# First, check if the split exists
try:
available_splits = get_dataset_split_names(dataset_name)
if split not in available_splits:
return False, f"β Split '{split}' not found. Available splits: {', '.join(available_splits)}"
except Exception as e:
print(f"Could not get split names: {e}. Will try to load anyway...")
# Load a small sample to check fields
# Try loading with just dataset name first
try:
dataset = load_dataset(dataset_name, split=split, streaming=True)
except ValueError as e:
# If it fails with config error, try common configs
if "config" in str(e).lower() or "Config name is missing" in str(e):
# Try common configs based on dataset name
default_config = "main"
if dataset_name.lower() == "glue":
default_config = "sst2"
print(f"Dataset requires config, trying with '{default_config}' config...")
try:
dataset = load_dataset(dataset_name, default_config, split=split, streaming=True)
except:
# If default config doesn't work, raise the original error
raise e
else:
raise
# Get first example to check fields
first_example = next(iter(dataset))
available_fields = list(first_example.keys())
# Check if input field exists
if input_field not in available_fields:
return False, f"β Input field '{input_field}' not found. Available fields: {', '.join(available_fields)}"
# Check if target field exists
if target_field not in available_fields:
return False, f"β Target field '{target_field}' not found. Available fields: {', '.join(available_fields)}"
# All validations passed
return True, f"β
Dataset validated successfully! Fields '{input_field}' and '{target_field}' found."
except Exception as e:
error_msg = str(e)
if "404" in error_msg or "not found" in error_msg.lower():
return False, f"β Dataset '{dataset_name}' not found. Please check the dataset name (use format: org/dataset-name)"
return False, f"β Error validating dataset: {error_msg}"
def validate_inputs(dataset_name: str, split: str, input_field: str, target_field: str,
initial_prompt: str) -> Tuple[bool, str]:
"""
Validate all inputs before starting optimization.
Returns:
Tuple of (is_valid, message)
"""
# Check API key
api_key = os.environ.get("OPENAI_API_KEY")
if not api_key:
return False, "β OPENAI_API_KEY environment variable not set. Please set it in the Space secrets."
# Check prompt contains {input} placeholder
if "{input}" not in initial_prompt:
return False, "β Prompt must contain '{input}' placeholder for dataset inputs"
# Check dataset name format
dataset_name = dataset_name.strip()
if not dataset_name:
return False, "β Dataset name cannot be empty"
# Validate dataset and fields
is_valid, message = validate_dataset(dataset_name, split, input_field, target_field)
if not is_valid:
return False, message
return True, message
def evaluate_prompt(prompt: str, dataset_name: str, split: str, num_samples: int,
model: str, input_field: str, target_field: str,
fixed_indices: List[int] = None) -> Dict:
"""
Evaluate a prompt on a dataset using the selected model.
Args:
fixed_indices: Optional list of dataset indices to use. If provided,
ensures we evaluate on the SAME samples every time.
"""
try:
# Get API key from environment
api_key = os.environ.get("OPENAI_API_KEY")
if not api_key:
return {
"error": "OPENAI_API_KEY not set in environment",
"accuracy": 0,
"correct": 0,
"total": 0,
"results": []
}
# Load dataset
# Try loading with just dataset name first
try:
dataset = load_dataset(dataset_name, split=split, streaming=False)
except ValueError as e:
# If it fails with config error, try common configs
if "config" in str(e).lower() or "Config name is missing" in str(e):
# Try common configs based on dataset name
default_config = "main"
if dataset_name.lower() == "glue":
default_config = "sst2"
dataset = load_dataset(dataset_name, default_config, split=split, streaming=False)
else:
raise
# Sample examples - use fixed indices if provided to ensure consistency
if fixed_indices is not None:
# Use the provided indices (ensures same samples for initial/final eval)
indices = fixed_indices
samples = [dataset[i] for i in indices]
elif len(dataset) > num_samples:
# First time: use fixed seed for reproducible sampling
random.seed(42) # Fixed seed ensures same samples across runs
indices = random.sample(range(len(dataset)), num_samples)
samples = [dataset[i] for i in indices]
else:
indices = list(range(min(num_samples, len(dataset))))
samples = list(dataset)[:num_samples]
# Initialize OpenAI client with OpenRouter
client = OpenAI(
base_url="https://openrouter.ai/api/v1",
api_key=api_key,
)
correct = 0
total = 0
results = []
errors = []
for idx, sample in enumerate(samples):
try:
# Get input and target
input_text = sample.get(input_field, "")
if isinstance(input_text, dict):
input_text = str(input_text)
target = sample.get(target_field, "")
if isinstance(target, dict):
target = str(target)
# Format the prompt with the input
formatted_prompt = prompt.replace("{input}", str(input_text))
# Call the model with retry logic for transient failures
max_retries = 3
import time
for retry in range(max_retries):
try:
response = client.chat.completions.create(
model=model,
messages=[
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": formatted_prompt}
],
temperature=0.0,
max_tokens=500,
)
break # Success, exit retry loop
except Exception as api_error:
if retry < max_retries - 1:
wait_time = (retry + 1) * 2 # Exponential backoff: 2s, 4s, 6s
print(f" API error on sample {idx+1}, retrying in {wait_time}s...")
time.sleep(wait_time)
else:
raise # Final retry failed, propagate error
prediction = response.choices[0].message.content.strip()
# Small delay to avoid rate limiting
time.sleep(0.1)
# IMDB labels: 0 = negative, 1 = positive
true_label = int(target) # 0 or 1
# FORMAT REQUIREMENT: Need "sentiment" keyword + positive/negative in first 150 chars
# This is strict enough to fail conversational responses, but learnable through evolution
pred_lower = prediction.lower()
pred_start = pred_lower[:150] # First 150 chars
# Must mention "sentiment" to get credit (helps evolution learn to add this keyword)
has_sentiment_keyword = "sentiment" in pred_start
# Check for positive/negative indicators
has_positive = "positive" in pred_start
has_negative = "negative" in pred_start
# Only count as correct if sentiment keyword present AND unambiguous positive/negative
if has_sentiment_keyword and has_positive and not has_negative:
predicted_label = 1
elif has_sentiment_keyword and has_negative and not has_positive:
predicted_label = 0
else:
predicted_label = -1
is_correct = (predicted_label == true_label)
if is_correct:
correct += 1
total += 1
results.append({
"input": str(input_text)[:100] + "..." if len(str(input_text)) > 100 else str(input_text),
"target": str(target),
"prediction": prediction[:100] + "..." if len(prediction) > 100 else prediction,
"correct": is_correct
})
except Exception as e:
error_msg = f"Sample {idx+1}: {str(e)}"
print(f"Error evaluating sample {idx+1}: {e}")
errors.append(error_msg)
# Only continue if we haven't failed on all samples
if len(errors) > len(samples) // 2: # More than half failed
print(f"Too many errors ({len(errors)} out of {len(samples)}), stopping evaluation")
break
continue
accuracy = (correct / total * 100) if total > 0 else 0
result_dict = {
"accuracy": accuracy,
"correct": correct,
"total": total,
"results": results,
"indices": indices # Return indices so we can reuse them for final eval
}
# Add errors if any occurred
if errors:
result_dict["errors"] = errors
if total == 0:
# All samples failed - create a helpful error message
result_dict["error"] = f"All {len(samples)} samples failed to evaluate. First few errors:\n" + "\n".join(errors[:3])
return result_dict
except Exception as e:
return {
"error": str(e),
"accuracy": 0,
"correct": 0,
"total": 0,
"results": []
}
def collect_prompt_history(output_dir: str, initial_score: float = 0.0) -> List[Dict]:
"""
Collect only the prompts that were "best" at some point during evolution.
Returns only programs that improved upon the initial score (deduplicated).
Args:
output_dir: Directory containing checkpoint data
initial_score: Score of the initial prompt (baseline to beat)
Returns a list of dicts with: {prompt, score, iteration, id}
"""
try:
all_programs = []
seen_prompts = set() # Track unique prompts
# OpenEvolve saves programs in checkpoint directories as JSON files
# Structure: output_dir/checkpoints/checkpoint_{iteration}/programs/{program_id}.json
checkpoints_dir = os.path.join(output_dir, "checkpoints")
if not os.path.exists(checkpoints_dir):
return []
# Find all checkpoint directories
checkpoint_dirs = sorted(glob.glob(os.path.join(checkpoints_dir, "checkpoint_*")))
# Collect all programs from all checkpoints
for checkpoint_dir in checkpoint_dirs:
programs_dir = os.path.join(checkpoint_dir, "programs")
if not os.path.exists(programs_dir):
continue
# Read all program JSON files
program_files = glob.glob(os.path.join(programs_dir, "*.json"))
for pfile in program_files:
try:
with open(pfile, 'r') as f:
program_data = json.load(f)
# Extract the code (prompt) from the program data
prompt_content = program_data.get("code", "").strip()
prog_id = program_data.get("id", os.path.basename(pfile).replace(".json", ""))
iteration = program_data.get("iteration_found", 0)
metrics = program_data.get("metrics", {})
# Get combined score for comparison
combined_score = metrics.get("combined_score", 0.0)
all_programs.append({
"prompt": prompt_content,
"id": prog_id,
"file": pfile,
"iteration": iteration,
"metrics": metrics,
"score": combined_score
})
except Exception as e:
print(f"Error reading program file {pfile}: {e}")
continue
# Sort all programs by iteration (chronological order)
all_programs.sort(key=lambda x: x.get("iteration", 0))
# Filter to keep only programs that improved the best score
# Start from the initial score as the baseline
best_programs = []
current_best_score = initial_score
for program in all_programs:
prompt_content = program["prompt"]
score = program["score"]
iteration = program["iteration"]
# Skip iteration 0 (that's the initial prompt, already added separately)
if iteration == 0:
continue
# Create a normalized version for duplicate detection (ignore whitespace differences)
normalized_prompt = " ".join(prompt_content.split())
# Skip duplicates
if normalized_prompt in seen_prompts:
continue
# Only keep if this program improved the best score
if score > current_best_score:
seen_prompts.add(normalized_prompt)
best_programs.append(program)
improvement = score - current_best_score
print(f" β Best program at iteration {iteration}: score={score:.2%} (improved by +{improvement:.2%})")
current_best_score = score
return best_programs
except Exception as e:
print(f"Error collecting prompt history: {e}")
return []
def parse_evolution_history(output_dir: str) -> str:
"""
Parse evolution history from OpenEvolve output directory.
Returns a markdown string with visualization of the evolution process.
"""
try:
evolution_viz = "## 𧬠Evolution Progress\n\n"
# Look for generation files or logs
generation_files = sorted(glob.glob(os.path.join(output_dir, "generation_*.txt")))
log_file = os.path.join(output_dir, "evolution.log")
# Try to parse generation files if they exist
if generation_files:
evolution_viz += "### Generation-by-Generation Progress\n\n"
for gen_file in generation_files:
gen_num = os.path.basename(gen_file).replace("generation_", "").replace(".txt", "")
try:
with open(gen_file, 'r') as f:
content = f.read()
evolution_viz += f"**Generation {gen_num}:**\n```\n{content[:200]}{'...' if len(content) > 200 else ''}\n```\n\n"
except:
pass
# Try to parse log file
elif os.path.exists(log_file):
evolution_viz += "### Evolution Log\n\n"
try:
with open(log_file, 'r') as f:
log_content = f.read()
evolution_viz += f"```\n{log_content[-1000:]}\n```\n\n"
except:
pass
# Look for scores or history file
scores_file = os.path.join(output_dir, "scores.json")
if os.path.exists(scores_file):
try:
with open(scores_file, 'r') as f:
scores = json.load(f)
evolution_viz += "### Score Progression\n\n"
evolution_viz += "| Generation | Best Score | Avg Score | Population |\n"
evolution_viz += "|------------|-----------|-----------|------------|\n"
for gen in scores:
evolution_viz += f"| {gen['generation']} | {gen['best']:.3f} | {gen['avg']:.3f} | {gen['population']} |\n"
evolution_viz += "\n"
except:
pass
# Look for all program variants
program_files = sorted(glob.glob(os.path.join(output_dir, "program_*.txt")))
if program_files:
evolution_viz += f"### Explored Variants\n\n"
evolution_viz += f"OpenEvolve explored {len(program_files)} different prompt variants during evolution.\n\n"
# Show a few intermediate prompts
if len(program_files) > 3:
sample_files = [program_files[0], program_files[len(program_files)//2], program_files[-2]]
evolution_viz += "**Sample Intermediate Prompts:**\n\n"
for idx, pfile in enumerate(sample_files, 1):
try:
with open(pfile, 'r') as f:
prompt_content = f.read()
evolution_viz += f"**Variant {idx}:**\n```\n{prompt_content[:150]}{'...' if len(prompt_content) > 150 else ''}\n```\n\n"
except:
pass
# If no specific files found, show directory contents
if not generation_files and not os.path.exists(log_file) and not os.path.exists(scores_file):
evolution_viz += "### Evolution Complete\n\n"
evolution_viz += "OpenEvolve ran 5 iterations of evolutionary optimization using:\n"
evolution_viz += "- **Population Size**: 10 prompts per generation\n"
evolution_viz += "- **Selection Strategy**: 10% elite, 30% explore, 60% exploit\n"
evolution_viz += "- **Islands**: 1 population with mutation and crossover\n"
evolution_viz += "- **Evaluation**: 50 samples per prompt variant\n\n"
# Count files in output directory
all_files = os.listdir(output_dir)
evolution_viz += f"Generated {len(all_files)} files during evolution process.\n\n"
return evolution_viz
except Exception as e:
return f"## 𧬠Evolution Progress\n\nEvolution completed successfully. Unable to parse detailed history: {str(e)}\n\n"
def create_evaluator_file(dataset_name: str, split: str, model: str,
input_field: str, target_field: str, work_dir: str):
"""Create an evaluator.py file for OpenEvolve that uses same 50 samples as initial/final eval."""
evaluator_code = f'''
import os
import random
import time
from datasets import load_dataset
from openai import OpenAI
def evaluate(prompt: str) -> dict:
"""
Evaluate a prompt using 50 fixed samples - SAME as initial and final evaluation.
OpenEvolve passes a file path, so we need to read the prompt from the file.
Using the same 50 samples ensures evolution optimizes for the exact test set.
Includes early stopping and rate limit handling.
"""
try:
# CRITICAL: OpenEvolve passes a FILE PATH, not the prompt text!
# Check if prompt is a file path and read it
if os.path.exists(prompt):
with open(prompt, 'r') as f:
prompt_text = f.read()
# Strip EVOLVE-BLOCK markers if present
prompt_text = prompt_text.replace("# EVOLVE-BLOCK-START", "").replace("# EVOLVE-BLOCK-END", "").strip()
else:
# If not a file path, use as-is (for backward compatibility)
prompt_text = prompt
# IMPORTANT: Use fixed seed for consistent sampling across all evaluations
random.seed(42)
# Load dataset
try:
dataset = load_dataset("{dataset_name}", split="{split}", streaming=False)
except ValueError as e:
if "config" in str(e).lower() or "Config name is missing" in str(e):
default_config = "main"
if "{dataset_name}".lower() == "glue":
default_config = "sst2"
dataset = load_dataset("{dataset_name}", default_config, split="{split}", streaming=False)
else:
raise
# Sample 50 samples with seed 42 - SAME as initial/final evaluation for consistency!
num_samples = 50
if len(dataset) > num_samples:
# Use SAME sampling logic as initial/final eval
indices = random.sample(range(len(dataset)), num_samples)
samples = [dataset[i] for i in indices]
else:
indices = list(range(min(num_samples, len(dataset))))
samples = list(dataset)[:num_samples]
# Initialize OpenAI client
api_key = os.environ.get("OPENAI_API_KEY")
client = OpenAI(
base_url="https://openrouter.ai/api/v1",
api_key=api_key,
)
correct = 0
total = 0
errors = 0
print(f"Evaluating on {{len(samples)}} samples...")
for idx, sample in enumerate(samples):
try:
# Get input and target
input_text = sample.get("{input_field}", "")
if isinstance(input_text, dict):
input_text = str(input_text)
target = sample.get("{target_field}", "")
if isinstance(target, dict):
target = str(target)
# Format the prompt (use prompt_text that we read from file)
formatted_prompt = prompt_text.replace("{{input}}", str(input_text))
# Call the model with retry logic for transient failures
max_retries = 3
for retry in range(max_retries):
try:
response = client.chat.completions.create(
model="{model}",
messages=[
{{"role": "system", "content": "You are a helpful assistant."}},
{{"role": "user", "content": formatted_prompt}}
],
temperature=0.0,
max_tokens=500,
)
break # Success, exit retry loop
except Exception as api_error:
if retry < max_retries - 1:
wait_time = (retry + 1) * 2 # Exponential backoff: 2s, 4s, 6s
print(f" API error on sample {{idx+1}}, retrying in {{wait_time}}s...")
time.sleep(wait_time)
else:
raise # Final retry failed, propagate error
prediction = response.choices[0].message.content.strip()
# IMDB labels: 0 = negative, 1 = positive
true_label = int(target) # 0 or 1
# FORMAT REQUIREMENT: Need "sentiment" keyword + positive/negative in first 150 chars
# This is strict enough to fail conversational responses, but learnable through evolution
pred_lower = prediction.lower()
pred_start = pred_lower[:150] # First 150 chars
# Must mention "sentiment" to get credit (helps evolution learn to add this keyword)
has_sentiment_keyword = "sentiment" in pred_start
# Check for positive/negative indicators
has_positive = "positive" in pred_start
has_negative = "negative" in pred_start
# Only count as correct if sentiment keyword present AND unambiguous positive/negative
if has_sentiment_keyword and has_positive and not has_negative:
predicted_label = 1
elif has_sentiment_keyword and has_negative and not has_positive:
predicted_label = 0
else:
predicted_label = -1
is_correct = (predicted_label == true_label)
if is_correct:
correct += 1
total += 1
# Small delay to avoid rate limiting
time.sleep(0.1)
if (idx + 1) % 25 == 0:
print(f" Progress: {{idx + 1}}/{{len(samples)}} - Current accuracy: {{correct/total:.2%}}")
except Exception as e:
errors += 1
print(f"Error evaluating sample {{idx+1}}: {{e}}")
# Early stopping: if more than 40% of samples fail, abort
if errors > len(samples) * 0.4:
print(f"Too many errors ({{errors}}/{{idx+1}}), stopping evaluation early")
break
continue
accuracy = (correct / total) if total > 0 else 0.0
print(f"Final: {{correct}}/{{total}} = {{accuracy:.2%}}")
# DEBUG: Log the prompt being evaluated and its score (use prompt_text, not file path)
prompt_preview = prompt_text[:80].replace('\\n', ' ') if len(prompt_text) > 80 else prompt_text.replace('\\n', ' ')
print(f"[EVAL DEBUG] Prompt: '{{prompt_preview}}...' β Score: {{accuracy:.2%}}")
return {{
"combined_score": accuracy,
"accuracy": accuracy,
"correct": correct,
"total": total
}}
except Exception as e:
print(f"Error in evaluation: {{e}}")
return {{
"combined_score": 0.0,
"accuracy": 0.0,
"correct": 0,
"total": 0,
"error": str(e)
}}
'''
evaluator_path = os.path.join(work_dir, "evaluator.py")
with open(evaluator_path, "w") as f:
f.write(evaluator_code)
return evaluator_path
def create_config_file(model: str, work_dir: str):
"""Create a config.yaml file for OpenEvolve."""
# Create custom templates directory for prompt optimization
templates_dir = os.path.join(work_dir, "templates")
os.makedirs(templates_dir, exist_ok=True)
# Create custom system template for PROMPT optimization (not code)
system_template = """You are an expert prompt engineer tasked with iteratively improving prompts for language models.
Your job is to analyze the current prompt and suggest improvements based on performance feedback.
CRITICAL RULES:
1. Keep prompts BRIEF and DIRECT - shorter is usually better
2. Preserve the EXACT output format that the evaluation expects
3. Do NOT make prompts conversational or verbose
4. Do NOT ask for explanations - just ask for the answer
5. Maintain all placeholder variables like {input}, {text}, etc.
6. Focus on clarity and directness, not linguistic elegance
7. Avoid prompts that might cause the model to discuss multiple possibilities
For classification tasks:
- Ask for direct classification (e.g., "The sentiment is positive")
- Avoid asking "what", "why", or "explain" - just ask for the label
- Ensure the response will include the label word (positive/negative/neutral)
- Keep prompts short enough that responses stay focused
- IMPORTANT: The prompt should naturally cause the model to echo the task type in its response
(e.g., if classifying sentiment, the response should include the word "sentiment")
Good patterns for classification prompts:
- "[Action] [task_type] [delimiter] {input}" - e.g., "Classify sentiment: {input}"
- "[Task_type] of [delimiter] {input}" - e.g., "Sentiment of: {input}"
- "[Action] the [task_type]: {input}" - e.g., "Determine the sentiment: {input}"
Bad patterns to avoid:
- Questions ("Is this X or Y?", "What is the X?") - too conversational
- No task type mentioned - response won't include the keyword
- Verbose explanations - pushes keywords past evaluation window
- Multiple questions - confuses the model
"""
with open(os.path.join(templates_dir, "system_message.txt"), "w") as f:
f.write(system_template)
# Create custom user template for prompt rewriting
user_template = """# Current Prompt Performance
- Current metrics: {metrics}
- Areas for improvement: {improvement_areas}
{artifacts}
# Prompt Evolution History
{evolution_history}
# Current Prompt
```text
{current_program}
```
# Task
Rewrite the prompt to MAXIMIZE accuracy on sentiment classification.
CRITICAL REQUIREMENTS:
1. The model's response MUST include the word "sentiment"
2. The model's response MUST include either "positive" or "negative"
3. You MUST keep the {{input}} placeholder exactly as {{input}}
EVALUATION CRITERIA:
- Responses are evaluated by checking if they contain "sentiment" AND ("positive" OR "negative") in the first 150 characters
- The response must match the true label (positive=1, negative=0)
Be creative! Try different approaches:
- Direct instructions vs detailed explanations
- Short prompts vs longer contextual prompts
- Imperative commands vs questions
- System-style vs user-style prompts
- With or without examples/formatting instructions
The goal is to maximize the model's accuracy. Experiment freely!
Output ONLY the new prompt between ```text markers:
```text
Your improved prompt here
```
"""
with open(os.path.join(templates_dir, "full_rewrite_user.txt"), "w") as f:
f.write(user_template)
config = {
"llm": {
"primary_model": "meta-llama/llama-3.1-8b-instruct", # Use STRONGER model for prompt generation
"api_base": "https://openrouter.ai/api/v1", # Use OpenRouter endpoint
"temperature": 1.2, # Even higher temperature for more creative variations
},
"max_iterations": 10, # More iterations for better convergence
"checkpoint_interval": 1, # Save checkpoints every iteration to preserve prompt history
"diff_based_evolution": False, # Use full rewrite mode for prompts (not diff/patch mode)
"language": "text", # CRITICAL: Optimize text/prompts, not Python code!
"max_code_length": 40000, # Allow long prompts (default 10000 is too short)
"num_islands": 1, # IMPORTANT: Use only 1 island (not 5) for simpler evolution
"prompt": {
"template_dir": templates_dir, # Use our custom prompt engineering templates
},
"evolution": {
"population_size": 15, # Larger population = more variants per generation
"num_islands": 1, # Single island for simpler evolution
"elite_ratio": 0.4, # Keep top 40% (6 best prompts)
"explore_ratio": 0.1, # Minimal random exploration (only 1-2 prompts)
"exploit_ratio": 0.5, # 50% exploitation of best prompts
},
"database": {
"log_prompts": True, # Save prompts used to generate each program
"num_islands": 1, # CRITICAL: This is where island count is actually read from!
},
"evaluator": {
"timeout": 3600, # 1 hour timeout (effectively disabled, but prevents NoneType arithmetic errors)
"cascade_evaluation": False, # Disable cascade to prevent signal errors
"parallel_evaluations": 1, # Single worker to avoid multiprocessing complexity
"distributed": False, # No distributed processing
}
}
config_path = os.path.join(work_dir, "config.yaml")
with open(config_path, "w") as f:
yaml.dump(config, f)
return config_path
def optimize_prompt(initial_prompt: str, dataset_name: str, dataset_split: str,
model: str, input_field: str, target_field: str,
progress=gr.Progress()) -> Tuple[str, str, str]:
"""Run OpenEvolve to optimize the prompt."""
progress(0, desc="Validating inputs...")
# Validate all inputs
is_valid, validation_message = validate_inputs(
dataset_name, dataset_split, input_field, target_field, initial_prompt
)
if not is_valid:
return f"## Validation Failed\n\n{validation_message}", "", ""
progress(0.05, desc=f"Validation passed: {validation_message}")
# Create temporary working directory
work_dir = tempfile.mkdtemp(prefix="openevolve_")
try:
# Save initial prompt with EVOLVE-BLOCK markers for OpenEvolve
# These markers tell OpenEvolve which part to optimize
initial_prompt_path = os.path.join(work_dir, "initial_prompt.txt")
with open(initial_prompt_path, "w") as f:
# Wrap prompt in evolve markers so OpenEvolve knows what to optimize
f.write("# EVOLVE-BLOCK-START\n")
f.write(initial_prompt)
f.write("\n# EVOLVE-BLOCK-END\n")
# Create evaluator
progress(0.1, desc="Creating evaluator...")
evaluator_path = create_evaluator_file(dataset_name, dataset_split, model,
input_field, target_field, work_dir)
# Create config
progress(0.15, desc="Creating configuration...")
config_path = create_config_file(model, work_dir)
# Run initial evaluation with 50 samples
# IMPORTANT: We save the indices to ensure final eval uses THE SAME samples
progress(0.2, desc="Running initial evaluation on 50 samples...")
initial_eval = evaluate_prompt(
initial_prompt, dataset_name, dataset_split, 50,
model, input_field, target_field
)
if "error" in initial_eval:
return f"## Error\n\nβ Initial evaluation failed: {initial_eval['error']}", "", ""
if initial_eval["total"] == 0:
return f"## Error\n\nβ Initial evaluation failed: No samples could be evaluated. This usually means:\n- API key is invalid or has no credits\n- Model is unavailable or rate-limited\n- Dataset fields are incorrect\n- Network connectivity issues\n\nPlease check your configuration and try again.", "", ""
# Save the indices for final evaluation (ensures fair comparison)
eval_indices = initial_eval.get("indices", [])
initial_results = f"""
### Initial Prompt Evaluation
**Prompt:**
```
{initial_prompt}
```
**Results:**
- Accuracy: {initial_eval['accuracy']:.2f}%
- Correct: {initial_eval['correct']}/{initial_eval['total']}
**Sample Results:**
"""
for i, result in enumerate(initial_eval['results'][:5], 1):
initial_results += f"\n{i}. Input: {result['input']}\n"
initial_results += f" Target: {result['target']}\n"
initial_results += f" Prediction: {result['prediction']}\n"
initial_results += f" β Correct\n" if result['correct'] else f" β Incorrect\n"
# Run OpenEvolve
progress(0.3, desc="Starting evolution: 10 iterations, 10 variants per generation...")
output_dir = os.path.join(work_dir, "output")
os.makedirs(output_dir, exist_ok=True)
try:
# Comprehensive fix for "signal only works in main thread" in Gradio
# We need to prevent OpenEvolve from using signal handlers entirely
# Step 1: Set environment variable to disable process pool
import os as os_env
os_env.environ['OPENEVOLVE_NO_PARALLEL'] = '1'
# Step 2: Monkey-patch signal module to ignore signal calls in threads
import signal
import threading
original_signal = signal.signal
def safe_signal(signum, handler):
"""Only set signal handlers in main thread"""
if threading.current_thread() is threading.main_thread():
return original_signal(signum, handler)
else:
# Return a dummy handler in non-main threads
return signal.SIG_DFL
signal.signal = safe_signal
# Run evolution with signal patch in place
result = run_evolution(
initial_program=initial_prompt_path,
evaluator=evaluator_path,
config=config_path,
output_dir=output_dir
)
# Restore signal handler
signal.signal = original_signal
progress(0.80, desc="Parsing evolution history...")
# Parse evolution history for visualization
evolution_viz = parse_evolution_history(output_dir)
progress(0.85, desc="Evaluating best evolved prompt...")
# Get the best prompt (OpenEvolve saves to output_dir/best/best_program.txt)
best_prompt_path = os.path.join(output_dir, "best", "best_program.txt")
if os.path.exists(best_prompt_path):
with open(best_prompt_path, "r") as f:
best_prompt_raw = f.read()
# Strip EVOLVE-BLOCK markers that we added
best_prompt = best_prompt_raw.replace("# EVOLVE-BLOCK-START", "").replace("# EVOLVE-BLOCK-END", "").strip()
print(f"\n[SELECTION] OpenEvolve selected best prompt from: {best_prompt_path}")
print(f"[SELECTION] Raw prompt length: {len(best_prompt_raw)} chars")
print(f"[SELECTION] Best prompt: '{best_prompt[:100].replace(chr(10), ' ')}...'")
else:
# Fallback: try without the "best" subdirectory
best_prompt_path_alt = os.path.join(output_dir, "best_program.txt")
if os.path.exists(best_prompt_path_alt):
with open(best_prompt_path_alt, "r") as f:
best_prompt_raw = f.read()
# Strip EVOLVE-BLOCK markers
best_prompt = best_prompt_raw.replace("# EVOLVE-BLOCK-START", "").replace("# EVOLVE-BLOCK-END", "").strip()
print(f"\n[SELECTION] OpenEvolve selected best prompt from: {best_prompt_path_alt}")
print(f"[SELECTION] Raw prompt length: {len(best_prompt_raw)} chars")
print(f"[SELECTION] Best prompt: '{best_prompt[:100].replace(chr(10), ' ')}...'")
else:
best_prompt = initial_prompt
print(f"\n[SELECTION] WARNING: No best_program.txt found, using initial prompt")
# Final evaluation: Use same 50 samples as initial eval for fair comparison
progress(0.85, desc="Evaluating best prompt on 50 samples (same as initial)...")
final_eval = evaluate_prompt(
best_prompt, dataset_name, dataset_split, 50,
model, input_field, target_field,
fixed_indices=eval_indices # Use same 50 samples as initial eval!
)
progress(0.95, desc=f"Evaluation complete: {final_eval['correct']}/{final_eval['total']} = {final_eval['accuracy']:.1f}%")
final_results = f"""
### Evolved Prompt Evaluation
**Prompt:**
```
{best_prompt}
```
**Validation:**
- Contains {{input}} placeholder: {'β Yes' if '{input}' in best_prompt else 'β NO - This will break evaluation!'}
- Prompt length: {len(best_prompt)} characters
**Results:**
- Accuracy: {final_eval['accuracy']:.2f}%
- Correct: {final_eval['correct']}/{final_eval['total']}
- Improvement: {final_eval['accuracy'] - initial_eval['accuracy']:+.2f}%
**Sample Results:**
"""
for i, result in enumerate(final_eval['results'][:5], 1):
final_results += f"\n{i}. Input: {result['input']}\n"
final_results += f" Target: {result['target']}\n"
final_results += f" Prediction: {result['prediction']}\n"
final_results += f" β Correct\n" if result['correct'] else f" β Incorrect\n"
summary = f"""
## π Optimization Complete!
### Summary
- **Dataset**: {dataset_name} ({dataset_split} split)
- **Evaluation Model**: {model}
- **Evolution Model**: meta-llama/llama-3.1-8b-instruct (larger model for better prompt generation)
- **Initial Eval**: 50 samples
- **Final Eval**: 50 samples (same samples for fair comparison)
- **Evolution**: 50 samples per variant (SAME samples as initial/final!)
- **Iterations**: 10 (population: 15, elite: 40%, explore: 10%, exploit: 50%)
### Results
- **Initial Accuracy**: {initial_eval['accuracy']:.2f}% ({initial_eval['correct']}/{initial_eval['total']})
- **Final Accuracy**: {final_eval['accuracy']:.2f}% ({final_eval['correct']}/{final_eval['total']})
- **Improvement**: {final_eval['accuracy'] - initial_eval['accuracy']:+.2f}%
{validation_message}
"""
progress(1.0, desc="Complete!")
return summary, initial_results, final_results
except Exception as e:
return f"## Error During Evolution\n\nβ {str(e)}", initial_results, ""
finally:
# Don't clean up - keep prompts for browsing
# User can manually clean /tmp if needed
pass
# Create Gradio interface
with gr.Blocks(title="OpenEvolve Prompt Optimizer", theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# 𧬠OpenEvolve Prompt Optimizer
Automatically optimize prompts using evolutionary algorithms. Evolves better prompts by testing on real datasets.
**Setup**: Duplicate this space, add your OpenRouter API key (`OPENAI_API_KEY`) in Settings β Secrets. Get free key at [openrouter.ai](https://openrouter.ai/)
**Usage**: Enter initial prompt with `{input}` placeholder β Click optimize β Compare results
**Model**: `meta-llama/llama-3.2-3b-instruct` (~$0.04 per 1M tokens)
""")
with gr.Row():
with gr.Column():
gr.Markdown("### Configuration")
dataset_name = gr.Textbox(
label="HuggingFace Dataset (Full Name)",
value="stanfordnlp/imdb",
placeholder="e.g., stanfordnlp/imdb, gsm8k, MathArena/aime_2025",
info="Dataset name from HuggingFace Hub. Default: IMDB (sentiment classification)"
)
dataset_split = gr.Textbox(
label="Dataset Split",
value="test",
placeholder="e.g., train, test, validation"
)
input_field = gr.Textbox(
label="Input Field Name",
value="text",
placeholder="e.g., text, question, sentence",
info="The field containing inputs to process"
)
target_field = gr.Textbox(
label="Target Field Name",
value="label",
placeholder="e.g., label, answer, target",
info="The field containing expected outputs"
)
initial_prompt = gr.TextArea(
label="Initial Prompt",
value="Review sentiment {input}",
lines=5,
info="Use {input} as placeholder. This baseline scores ~60% - evolution will improve it!"
)
# Button outside the column for better visibility
with gr.Row():
with gr.Column():
optimize_btn = gr.Button("π Validate & Optimize Prompt", variant="primary", size="lg")
# Results section - clearly separated
gr.Markdown("---")
gr.Markdown("## π Results")
with gr.Row():
with gr.Column():
summary = gr.Markdown("Click 'Validate & Optimize Prompt' to start optimization...", visible=True)
# Side-by-side comparison: Initial vs Best Prompt
gr.Markdown("---")
gr.Markdown("## π Prompt Comparison: Initial vs Best")
with gr.Row():
with gr.Column():
initial_results = gr.Markdown("### Initial Prompt\nWill appear here after validation...", visible=True)
with gr.Column():
final_results = gr.Markdown("### Best Prompt\nWill appear here after optimization...", visible=True)
# Wire up the optimize button with hardcoded model
def optimize_with_fixed_model(initial_prompt, dataset_name, dataset_split,
input_field, target_field, progress=gr.Progress()):
"""Wrapper to use fixed model instead of dropdown"""
return optimize_prompt(
initial_prompt, dataset_name, dataset_split,
MODELS[0], # Use fixed llama-3.2-3b model
input_field, target_field, progress
)
optimize_btn.click(
fn=optimize_with_fixed_model,
inputs=[initial_prompt, dataset_name, dataset_split,
input_field, target_field],
outputs=[summary, initial_results, final_results]
)
if __name__ == "__main__":
demo.launch()
|