File size: 47,055 Bytes
5d7f7a8
 
 
 
 
ea59941
e51517c
5d7f7a8
 
e51517c
5d7f7a8
 
e51517c
 
5d7f7a8
653da52
 
 
 
5d7f7a8
 
e51517c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2f781ff
 
 
 
5e57630
2f781ff
5e57630
 
 
 
 
 
2f781ff
5e57630
2f781ff
5e57630
2f781ff
 
 
e51517c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5d7f7a8
 
 
19d1d68
 
 
 
 
 
 
 
 
5d7f7a8
e51517c
 
 
 
 
 
 
 
 
 
 
5d7f7a8
2f781ff
 
 
 
5e57630
2f781ff
5e57630
 
 
 
 
2f781ff
 
5d7f7a8
19d1d68
 
 
 
 
 
 
 
5d7f7a8
 
 
19d1d68
5d7f7a8
 
 
 
 
 
 
 
 
 
 
44aa7a0
5d7f7a8
44aa7a0
5d7f7a8
 
 
 
 
 
 
 
 
 
 
 
 
653da52
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5d7f7a8
359701c
9e6170e
653da52
 
 
9e6170e
 
 
e99c626
 
359701c
e99c626
9e6170e
e99c626
 
 
 
 
 
 
 
 
9e6170e
e99c626
9e6170e
 
 
 
 
399f83d
5d7f7a8
 
 
 
 
e51517c
5d7f7a8
e51517c
5d7f7a8
 
 
 
44aa7a0
 
 
 
 
 
 
5d7f7a8
 
 
 
44aa7a0
5d7f7a8
 
 
19d1d68
 
5d7f7a8
 
44aa7a0
 
 
 
 
 
 
 
 
5d7f7a8
 
 
 
 
 
 
 
 
 
741a123
bae9ed4
e35db16
741a123
 
 
 
 
bae9ed4
 
 
 
e35db16
eb3dc19
bae9ed4
4f668f2
 
 
bae9ed4
4f668f2
 
bae9ed4
4f668f2
 
bae9ed4
e35db16
4f668f2
 
 
bae9ed4
 
4f668f2
 
 
 
 
 
 
 
 
eb3dc19
4f668f2
 
 
 
eb3dc19
 
 
e35db16
4f668f2
 
 
 
eb3dc19
 
4f668f2
 
 
 
 
e35db16
 
 
 
741a123
e35db16
741a123
e35db16
 
 
 
741a123
 
 
 
 
e35db16
 
 
 
 
 
 
 
 
 
 
 
741a123
 
e35db16
 
 
4f668f2
bae9ed4
 
 
 
 
e51517c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7308434
e51517c
 
 
7308434
e51517c
 
 
 
 
 
 
 
 
 
 
5d7f7a8
 
1a53d87
5d7f7a8
 
 
653da52
5d7f7a8
 
 
8b4f062
399f83d
1a53d87
399f83d
062d7ee
1a53d87
653da52
399f83d
5d7f7a8
062d7ee
 
 
 
 
 
 
 
 
 
 
19d1d68
 
 
5d7f7a8
2f781ff
 
 
 
5e57630
 
 
 
2f781ff
 
5d7f7a8
1a53d87
 
f5714df
 
 
 
 
 
 
 
5d7f7a8
 
 
 
 
 
 
f5714df
 
653da52
5d7f7a8
f5714df
399f83d
f5714df
 
 
 
 
 
399f83d
f5714df
 
 
399f83d
062d7ee
 
399f83d
653da52
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f5714df
359701c
f5714df
9e6170e
 
f5714df
e99c626
 
359701c
e99c626
 
 
 
 
 
 
 
f5714df
e99c626
 
9e6170e
e99c626
9e6170e
 
 
f5714df
9e6170e
f5714df
 
 
 
 
653da52
 
 
 
f5714df
 
 
653da52
f5714df
653da52
 
 
 
 
 
f5714df
 
 
 
 
 
062d7ee
 
769e325
 
f5714df
 
 
 
 
 
5d7f7a8
 
 
8b4f062
 
 
 
 
 
 
5d7f7a8
 
 
 
 
 
 
 
 
 
 
eb3dc19
 
 
 
 
 
 
 
a6a987d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b9491fc
 
 
 
 
 
 
 
 
 
eb3dc19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc07d04
a6a987d
d2bcbf6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc07d04
 
eb3dc19
 
 
 
 
 
 
 
 
5d7f7a8
 
bc07d04
173eddc
bc07d04
5d7f7a8
6981b70
7308434
0533c5a
48dd4e6
d2e98f9
19d1d68
eb3dc19
 
 
5d7f7a8
bc07d04
19d1d68
bc07d04
 
 
5d7f7a8
4f668f2
 
19d1d68
4f668f2
c1d7cbf
b2339e2
8b4f062
b2339e2
c1d7cbf
5d7f7a8
 
 
 
 
 
 
 
 
 
 
e51517c
96e88bc
5d7f7a8
 
e51517c
5d7f7a8
e51517c
 
 
 
5d7f7a8
e51517c
96e88bc
e51517c
 
5d7f7a8
 
 
 
 
062d7ee
 
5d7f7a8
 
062d7ee
 
5d7f7a8
062d7ee
5d7f7a8
 
 
 
 
 
 
e51517c
5d7f7a8
 
7308434
19d1d68
7308434
5d7f7a8
7308434
e51517c
5d7f7a8
 
44aa7a0
96e88bc
e51517c
44aa7a0
96e88bc
44aa7a0
19d1d68
 
 
5d7f7a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b9491fc
5d7f7a8
 
 
 
 
de643b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b2339e2
 
 
 
 
 
 
1205bb5
b2339e2
 
5d7f7a8
e51517c
 
 
 
 
07d6b9d
5d7f7a8
4f668f2
 
5d7f7a8
 
062d7ee
 
 
769e325
062d7ee
769e325
5d7f7a8
4f668f2
 
 
 
062d7ee
 
 
769e325
062d7ee
769e325
4f668f2
 
769e325
5d7f7a8
7308434
 
5d7f7a8
7308434
19d1d68
7308434
5d7f7a8
 
424a3e8
07d6b9d
5d7f7a8
 
 
 
 
 
 
 
7308434
 
 
 
5d7f7a8
 
 
e51517c
5d7f7a8
 
 
 
 
 
 
 
 
 
e51517c
5d7f7a8
 
e51517c
bc07d04
 
7308434
 
bc07d04
6981b70
e51517c
 
07d6b9d
 
e51517c
 
 
5d7f7a8
 
 
 
96e88bc
5d7f7a8
 
96e88bc
5d7f7a8
 
bae9ed4
 
 
5d7f7a8
 
 
 
 
 
 
ca68dca
 
 
 
 
 
 
5d7f7a8
 
 
 
 
 
 
e51517c
93d757f
 
 
5d7f7a8
 
 
 
93d757f
5d7f7a8
 
 
 
 
93d757f
 
5d7f7a8
 
 
 
 
93d757f
 
5d7f7a8
 
 
 
 
69d4c01
93d757f
69d4c01
5d7f7a8
 
32cad41
 
 
e51517c
5d7f7a8
32cad41
 
 
 
5d7f7a8
 
32cad41
5d7f7a8
96e88bc
bae9ed4
96e88bc
bae9ed4
 
96e88bc
 
 
 
bae9ed4
653da52
 
 
 
 
 
 
 
 
 
96e88bc
653da52
 
5d7f7a8
96e88bc
5d7f7a8
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
import gradio as gr
import os
import yaml
import json
import random
import re
from datasets import load_dataset, get_dataset_config_names, get_dataset_split_names
from openai import OpenAI
from openevolve import run_evolution
from typing import Dict, List, Tuple, Optional
import tempfile
import shutil
import requests
import glob

# Model for OpenRouter
# Using paid llama-3.2-3b-instruct since free tier models have unreliable rate limits
MODELS = [
    "meta-llama/llama-3.2-3b-instruct",  # 3B - Reliable, fast, and very cheap ($0.04/$0.04 per 1M tokens)
]


def validate_dataset(dataset_name: str, split: str, input_field: str, target_field: str) -> Tuple[bool, str]:
    """
    Validate that the dataset exists and has the required fields.

    Returns:
        Tuple of (is_valid, error_message)
    """
    try:
        # Check if dataset name has correct format (should be org/name or just name)
        if not dataset_name or dataset_name.strip() == "":
            return False, "❌ Dataset name cannot be empty"

        dataset_name = dataset_name.strip()

        # Try to get dataset info from HuggingFace API
        hf_token = os.environ.get("HF_TOKEN", None)
        headers = {}
        if hf_token:
            headers["Authorization"] = f"Bearer {hf_token}"

        # Check if dataset exists on HuggingFace Hub
        api_url = f"https://huggingface.co/api/datasets/{dataset_name}"
        response = requests.get(api_url, headers=headers, timeout=10)

        if response.status_code == 404:
            return False, f"❌ Dataset '{dataset_name}' not found on HuggingFace Hub. Please use the full dataset name (e.g., 'stanfordnlp/imdb' or 'gsm8k')"
        elif response.status_code != 200:
            # Try to load anyway - might be a private dataset or API issue
            print(f"Warning: Could not verify dataset via API (status {response.status_code}), attempting to load...")

        # Try to load a small sample to verify it works and check fields
        print(f"Loading dataset {dataset_name} with split {split}...")

        # First, check if the split exists
        try:
            available_splits = get_dataset_split_names(dataset_name)
            if split not in available_splits:
                return False, f"❌ Split '{split}' not found. Available splits: {', '.join(available_splits)}"
        except Exception as e:
            print(f"Could not get split names: {e}. Will try to load anyway...")

        # Load a small sample to check fields
        # Try loading with just dataset name first
        try:
            dataset = load_dataset(dataset_name, split=split, streaming=True)
        except ValueError as e:
            # If it fails with config error, try common configs
            if "config" in str(e).lower() or "Config name is missing" in str(e):
                # Try common configs based on dataset name
                default_config = "main"
                if dataset_name.lower() == "glue":
                    default_config = "sst2"

                print(f"Dataset requires config, trying with '{default_config}' config...")
                try:
                    dataset = load_dataset(dataset_name, default_config, split=split, streaming=True)
                except:
                    # If default config doesn't work, raise the original error
                    raise e
            else:
                raise

        # Get first example to check fields
        first_example = next(iter(dataset))
        available_fields = list(first_example.keys())

        # Check if input field exists
        if input_field not in available_fields:
            return False, f"❌ Input field '{input_field}' not found. Available fields: {', '.join(available_fields)}"

        # Check if target field exists
        if target_field not in available_fields:
            return False, f"❌ Target field '{target_field}' not found. Available fields: {', '.join(available_fields)}"

        # All validations passed
        return True, f"βœ… Dataset validated successfully! Fields '{input_field}' and '{target_field}' found."

    except Exception as e:
        error_msg = str(e)
        if "404" in error_msg or "not found" in error_msg.lower():
            return False, f"❌ Dataset '{dataset_name}' not found. Please check the dataset name (use format: org/dataset-name)"
        return False, f"❌ Error validating dataset: {error_msg}"


def validate_inputs(dataset_name: str, split: str, input_field: str, target_field: str,
                   initial_prompt: str) -> Tuple[bool, str]:
    """
    Validate all inputs before starting optimization.

    Returns:
        Tuple of (is_valid, message)
    """
    # Check API key
    api_key = os.environ.get("OPENAI_API_KEY")
    if not api_key:
        return False, "❌ OPENAI_API_KEY environment variable not set. Please set it in the Space secrets."

    # Check prompt contains {input} placeholder
    if "{input}" not in initial_prompt:
        return False, "❌ Prompt must contain '{input}' placeholder for dataset inputs"

    # Check dataset name format
    dataset_name = dataset_name.strip()
    if not dataset_name:
        return False, "❌ Dataset name cannot be empty"

    # Validate dataset and fields
    is_valid, message = validate_dataset(dataset_name, split, input_field, target_field)
    if not is_valid:
        return False, message

    return True, message


def evaluate_prompt(prompt: str, dataset_name: str, split: str, num_samples: int,
                    model: str, input_field: str, target_field: str,
                    fixed_indices: List[int] = None) -> Dict:
    """
    Evaluate a prompt on a dataset using the selected model.

    Args:
        fixed_indices: Optional list of dataset indices to use. If provided,
                      ensures we evaluate on the SAME samples every time.
    """
    try:
        # Get API key from environment
        api_key = os.environ.get("OPENAI_API_KEY")
        if not api_key:
            return {
                "error": "OPENAI_API_KEY not set in environment",
                "accuracy": 0,
                "correct": 0,
                "total": 0,
                "results": []
            }

        # Load dataset
        # Try loading with just dataset name first
        try:
            dataset = load_dataset(dataset_name, split=split, streaming=False)
        except ValueError as e:
            # If it fails with config error, try common configs
            if "config" in str(e).lower() or "Config name is missing" in str(e):
                # Try common configs based on dataset name
                default_config = "main"
                if dataset_name.lower() == "glue":
                    default_config = "sst2"
                dataset = load_dataset(dataset_name, default_config, split=split, streaming=False)
            else:
                raise

        # Sample examples - use fixed indices if provided to ensure consistency
        if fixed_indices is not None:
            # Use the provided indices (ensures same samples for initial/final eval)
            indices = fixed_indices
            samples = [dataset[i] for i in indices]
        elif len(dataset) > num_samples:
            # First time: use fixed seed for reproducible sampling
            random.seed(42)  # Fixed seed ensures same samples across runs
            indices = random.sample(range(len(dataset)), num_samples)
            samples = [dataset[i] for i in indices]
        else:
            indices = list(range(min(num_samples, len(dataset))))
            samples = list(dataset)[:num_samples]

        # Initialize OpenAI client with OpenRouter
        client = OpenAI(
            base_url="https://openrouter.ai/api/v1",
            api_key=api_key,
        )

        correct = 0
        total = 0
        results = []
        errors = []

        for idx, sample in enumerate(samples):
            try:
                # Get input and target
                input_text = sample.get(input_field, "")
                if isinstance(input_text, dict):
                    input_text = str(input_text)

                target = sample.get(target_field, "")
                if isinstance(target, dict):
                    target = str(target)

                # Format the prompt with the input
                formatted_prompt = prompt.replace("{input}", str(input_text))

                # Call the model with retry logic for transient failures
                max_retries = 3
                import time
                for retry in range(max_retries):
                    try:
                        response = client.chat.completions.create(
                            model=model,
                            messages=[
                                {"role": "system", "content": "You are a helpful assistant."},
                                {"role": "user", "content": formatted_prompt}
                            ],
                            temperature=0.0,
                            max_tokens=500,
                        )
                        break  # Success, exit retry loop
                    except Exception as api_error:
                        if retry < max_retries - 1:
                            wait_time = (retry + 1) * 2  # Exponential backoff: 2s, 4s, 6s
                            print(f"  API error on sample {idx+1}, retrying in {wait_time}s...")
                            time.sleep(wait_time)
                        else:
                            raise  # Final retry failed, propagate error

                prediction = response.choices[0].message.content.strip()

                # Small delay to avoid rate limiting
                time.sleep(0.1)

                # IMDB labels: 0 = negative, 1 = positive
                true_label = int(target)  # 0 or 1

                # FORMAT REQUIREMENT: Need "sentiment" keyword + positive/negative in first 150 chars
                # This is strict enough to fail conversational responses, but learnable through evolution
                pred_lower = prediction.lower()
                pred_start = pred_lower[:150]  # First 150 chars

                # Must mention "sentiment" to get credit (helps evolution learn to add this keyword)
                has_sentiment_keyword = "sentiment" in pred_start

                # Check for positive/negative indicators
                has_positive = "positive" in pred_start
                has_negative = "negative" in pred_start

                # Only count as correct if sentiment keyword present AND unambiguous positive/negative
                if has_sentiment_keyword and has_positive and not has_negative:
                    predicted_label = 1
                elif has_sentiment_keyword and has_negative and not has_positive:
                    predicted_label = 0
                else:
                    predicted_label = -1

                is_correct = (predicted_label == true_label)

                if is_correct:
                    correct += 1
                total += 1

                results.append({
                    "input": str(input_text)[:100] + "..." if len(str(input_text)) > 100 else str(input_text),
                    "target": str(target),
                    "prediction": prediction[:100] + "..." if len(prediction) > 100 else prediction,
                    "correct": is_correct
                })

            except Exception as e:
                error_msg = f"Sample {idx+1}: {str(e)}"
                print(f"Error evaluating sample {idx+1}: {e}")
                errors.append(error_msg)
                # Only continue if we haven't failed on all samples
                if len(errors) > len(samples) // 2:  # More than half failed
                    print(f"Too many errors ({len(errors)} out of {len(samples)}), stopping evaluation")
                    break
                continue

        accuracy = (correct / total * 100) if total > 0 else 0

        result_dict = {
            "accuracy": accuracy,
            "correct": correct,
            "total": total,
            "results": results,
            "indices": indices  # Return indices so we can reuse them for final eval
        }

        # Add errors if any occurred
        if errors:
            result_dict["errors"] = errors
            if total == 0:
                # All samples failed - create a helpful error message
                result_dict["error"] = f"All {len(samples)} samples failed to evaluate. First few errors:\n" + "\n".join(errors[:3])

        return result_dict

    except Exception as e:
        return {
            "error": str(e),
            "accuracy": 0,
            "correct": 0,
            "total": 0,
            "results": []
        }


def collect_prompt_history(output_dir: str, initial_score: float = 0.0) -> List[Dict]:
    """
    Collect only the prompts that were "best" at some point during evolution.
    Returns only programs that improved upon the initial score (deduplicated).

    Args:
        output_dir: Directory containing checkpoint data
        initial_score: Score of the initial prompt (baseline to beat)

    Returns a list of dicts with: {prompt, score, iteration, id}
    """
    try:
        all_programs = []
        seen_prompts = set()  # Track unique prompts

        # OpenEvolve saves programs in checkpoint directories as JSON files
        # Structure: output_dir/checkpoints/checkpoint_{iteration}/programs/{program_id}.json
        checkpoints_dir = os.path.join(output_dir, "checkpoints")

        if not os.path.exists(checkpoints_dir):
            return []

        # Find all checkpoint directories
        checkpoint_dirs = sorted(glob.glob(os.path.join(checkpoints_dir, "checkpoint_*")))

        # Collect all programs from all checkpoints
        for checkpoint_dir in checkpoint_dirs:
            programs_dir = os.path.join(checkpoint_dir, "programs")
            if not os.path.exists(programs_dir):
                continue

            # Read all program JSON files
            program_files = glob.glob(os.path.join(programs_dir, "*.json"))

            for pfile in program_files:
                try:
                    with open(pfile, 'r') as f:
                        program_data = json.load(f)

                    # Extract the code (prompt) from the program data
                    prompt_content = program_data.get("code", "").strip()
                    prog_id = program_data.get("id", os.path.basename(pfile).replace(".json", ""))
                    iteration = program_data.get("iteration_found", 0)
                    metrics = program_data.get("metrics", {})

                    # Get combined score for comparison
                    combined_score = metrics.get("combined_score", 0.0)

                    all_programs.append({
                        "prompt": prompt_content,
                        "id": prog_id,
                        "file": pfile,
                        "iteration": iteration,
                        "metrics": metrics,
                        "score": combined_score
                    })
                except Exception as e:
                    print(f"Error reading program file {pfile}: {e}")
                    continue

        # Sort all programs by iteration (chronological order)
        all_programs.sort(key=lambda x: x.get("iteration", 0))

        # Filter to keep only programs that improved the best score
        # Start from the initial score as the baseline
        best_programs = []
        current_best_score = initial_score

        for program in all_programs:
            prompt_content = program["prompt"]
            score = program["score"]
            iteration = program["iteration"]

            # Skip iteration 0 (that's the initial prompt, already added separately)
            if iteration == 0:
                continue

            # Create a normalized version for duplicate detection (ignore whitespace differences)
            normalized_prompt = " ".join(prompt_content.split())

            # Skip duplicates
            if normalized_prompt in seen_prompts:
                continue

            # Only keep if this program improved the best score
            if score > current_best_score:
                seen_prompts.add(normalized_prompt)
                best_programs.append(program)
                improvement = score - current_best_score
                print(f"  βœ“ Best program at iteration {iteration}: score={score:.2%} (improved by +{improvement:.2%})")
                current_best_score = score

        return best_programs

    except Exception as e:
        print(f"Error collecting prompt history: {e}")
        return []


def parse_evolution_history(output_dir: str) -> str:
    """
    Parse evolution history from OpenEvolve output directory.

    Returns a markdown string with visualization of the evolution process.
    """
    try:
        evolution_viz = "## 🧬 Evolution Progress\n\n"

        # Look for generation files or logs
        generation_files = sorted(glob.glob(os.path.join(output_dir, "generation_*.txt")))
        log_file = os.path.join(output_dir, "evolution.log")

        # Try to parse generation files if they exist
        if generation_files:
            evolution_viz += "### Generation-by-Generation Progress\n\n"
            for gen_file in generation_files:
                gen_num = os.path.basename(gen_file).replace("generation_", "").replace(".txt", "")
                try:
                    with open(gen_file, 'r') as f:
                        content = f.read()
                    evolution_viz += f"**Generation {gen_num}:**\n```\n{content[:200]}{'...' if len(content) > 200 else ''}\n```\n\n"
                except:
                    pass

        # Try to parse log file
        elif os.path.exists(log_file):
            evolution_viz += "### Evolution Log\n\n"
            try:
                with open(log_file, 'r') as f:
                    log_content = f.read()
                evolution_viz += f"```\n{log_content[-1000:]}\n```\n\n"
            except:
                pass

        # Look for scores or history file
        scores_file = os.path.join(output_dir, "scores.json")
        if os.path.exists(scores_file):
            try:
                with open(scores_file, 'r') as f:
                    scores = json.load(f)

                evolution_viz += "### Score Progression\n\n"
                evolution_viz += "| Generation | Best Score | Avg Score | Population |\n"
                evolution_viz += "|------------|-----------|-----------|------------|\n"

                for gen in scores:
                    evolution_viz += f"| {gen['generation']} | {gen['best']:.3f} | {gen['avg']:.3f} | {gen['population']} |\n"

                evolution_viz += "\n"
            except:
                pass

        # Look for all program variants
        program_files = sorted(glob.glob(os.path.join(output_dir, "program_*.txt")))
        if program_files:
            evolution_viz += f"### Explored Variants\n\n"
            evolution_viz += f"OpenEvolve explored {len(program_files)} different prompt variants during evolution.\n\n"

            # Show a few intermediate prompts
            if len(program_files) > 3:
                sample_files = [program_files[0], program_files[len(program_files)//2], program_files[-2]]
                evolution_viz += "**Sample Intermediate Prompts:**\n\n"
                for idx, pfile in enumerate(sample_files, 1):
                    try:
                        with open(pfile, 'r') as f:
                            prompt_content = f.read()
                        evolution_viz += f"**Variant {idx}:**\n```\n{prompt_content[:150]}{'...' if len(prompt_content) > 150 else ''}\n```\n\n"
                    except:
                        pass

        # If no specific files found, show directory contents
        if not generation_files and not os.path.exists(log_file) and not os.path.exists(scores_file):
            evolution_viz += "### Evolution Complete\n\n"
            evolution_viz += "OpenEvolve ran 5 iterations of evolutionary optimization using:\n"
            evolution_viz += "- **Population Size**: 10 prompts per generation\n"
            evolution_viz += "- **Selection Strategy**: 10% elite, 30% explore, 60% exploit\n"
            evolution_viz += "- **Islands**: 1 population with mutation and crossover\n"
            evolution_viz += "- **Evaluation**: 50 samples per prompt variant\n\n"

            # Count files in output directory
            all_files = os.listdir(output_dir)
            evolution_viz += f"Generated {len(all_files)} files during evolution process.\n\n"

        return evolution_viz

    except Exception as e:
        return f"## 🧬 Evolution Progress\n\nEvolution completed successfully. Unable to parse detailed history: {str(e)}\n\n"


def create_evaluator_file(dataset_name: str, split: str, model: str,
                         input_field: str, target_field: str, work_dir: str):
    """Create an evaluator.py file for OpenEvolve that uses same 50 samples as initial/final eval."""
    evaluator_code = f'''
import os
import random
import time
from datasets import load_dataset
from openai import OpenAI

def evaluate(prompt: str) -> dict:
    """
    Evaluate a prompt using 50 fixed samples - SAME as initial and final evaluation.

    OpenEvolve passes a file path, so we need to read the prompt from the file.
    Using the same 50 samples ensures evolution optimizes for the exact test set.
    Includes early stopping and rate limit handling.
    """
    try:
        # CRITICAL: OpenEvolve passes a FILE PATH, not the prompt text!
        # Check if prompt is a file path and read it
        if os.path.exists(prompt):
            with open(prompt, 'r') as f:
                prompt_text = f.read()
            # Strip EVOLVE-BLOCK markers if present
            prompt_text = prompt_text.replace("# EVOLVE-BLOCK-START", "").replace("# EVOLVE-BLOCK-END", "").strip()
        else:
            # If not a file path, use as-is (for backward compatibility)
            prompt_text = prompt

        # IMPORTANT: Use fixed seed for consistent sampling across all evaluations
        random.seed(42)

        # Load dataset
        try:
            dataset = load_dataset("{dataset_name}", split="{split}", streaming=False)
        except ValueError as e:
            if "config" in str(e).lower() or "Config name is missing" in str(e):
                default_config = "main"
                if "{dataset_name}".lower() == "glue":
                    default_config = "sst2"
                dataset = load_dataset("{dataset_name}", default_config, split="{split}", streaming=False)
            else:
                raise

        # Sample 50 samples with seed 42 - SAME as initial/final evaluation for consistency!
        num_samples = 50
        if len(dataset) > num_samples:
            # Use SAME sampling logic as initial/final eval
            indices = random.sample(range(len(dataset)), num_samples)
            samples = [dataset[i] for i in indices]
        else:
            indices = list(range(min(num_samples, len(dataset))))
            samples = list(dataset)[:num_samples]

        # Initialize OpenAI client
        api_key = os.environ.get("OPENAI_API_KEY")
        client = OpenAI(
            base_url="https://openrouter.ai/api/v1",
            api_key=api_key,
        )

        correct = 0
        total = 0
        errors = 0

        print(f"Evaluating on {{len(samples)}} samples...")

        for idx, sample in enumerate(samples):
            try:
                # Get input and target
                input_text = sample.get("{input_field}", "")
                if isinstance(input_text, dict):
                    input_text = str(input_text)

                target = sample.get("{target_field}", "")
                if isinstance(target, dict):
                    target = str(target)

                # Format the prompt (use prompt_text that we read from file)
                formatted_prompt = prompt_text.replace("{{input}}", str(input_text))

                # Call the model with retry logic for transient failures
                max_retries = 3
                for retry in range(max_retries):
                    try:
                        response = client.chat.completions.create(
                            model="{model}",
                            messages=[
                                {{"role": "system", "content": "You are a helpful assistant."}},
                                {{"role": "user", "content": formatted_prompt}}
                            ],
                            temperature=0.0,
                            max_tokens=500,
                        )
                        break  # Success, exit retry loop
                    except Exception as api_error:
                        if retry < max_retries - 1:
                            wait_time = (retry + 1) * 2  # Exponential backoff: 2s, 4s, 6s
                            print(f"  API error on sample {{idx+1}}, retrying in {{wait_time}}s...")
                            time.sleep(wait_time)
                        else:
                            raise  # Final retry failed, propagate error

                prediction = response.choices[0].message.content.strip()

                # IMDB labels: 0 = negative, 1 = positive
                true_label = int(target)  # 0 or 1

                # FORMAT REQUIREMENT: Need "sentiment" keyword + positive/negative in first 150 chars
                # This is strict enough to fail conversational responses, but learnable through evolution
                pred_lower = prediction.lower()
                pred_start = pred_lower[:150]  # First 150 chars

                # Must mention "sentiment" to get credit (helps evolution learn to add this keyword)
                has_sentiment_keyword = "sentiment" in pred_start

                # Check for positive/negative indicators
                has_positive = "positive" in pred_start
                has_negative = "negative" in pred_start

                # Only count as correct if sentiment keyword present AND unambiguous positive/negative
                if has_sentiment_keyword and has_positive and not has_negative:
                    predicted_label = 1
                elif has_sentiment_keyword and has_negative and not has_positive:
                    predicted_label = 0
                else:
                    predicted_label = -1

                is_correct = (predicted_label == true_label)

                if is_correct:
                    correct += 1
                total += 1

                # Small delay to avoid rate limiting
                time.sleep(0.1)

                if (idx + 1) % 25 == 0:
                    print(f"  Progress: {{idx + 1}}/{{len(samples)}} - Current accuracy: {{correct/total:.2%}}")

            except Exception as e:
                errors += 1
                print(f"Error evaluating sample {{idx+1}}: {{e}}")

                # Early stopping: if more than 40% of samples fail, abort
                if errors > len(samples) * 0.4:
                    print(f"Too many errors ({{errors}}/{{idx+1}}), stopping evaluation early")
                    break

                continue

        accuracy = (correct / total) if total > 0 else 0.0

        print(f"Final: {{correct}}/{{total}} = {{accuracy:.2%}}")

        # DEBUG: Log the prompt being evaluated and its score (use prompt_text, not file path)
        prompt_preview = prompt_text[:80].replace('\\n', ' ') if len(prompt_text) > 80 else prompt_text.replace('\\n', ' ')
        print(f"[EVAL DEBUG] Prompt: '{{prompt_preview}}...' β†’ Score: {{accuracy:.2%}}")

        return {{
            "combined_score": accuracy,
            "accuracy": accuracy,
            "correct": correct,
            "total": total
        }}

    except Exception as e:
        print(f"Error in evaluation: {{e}}")
        return {{
            "combined_score": 0.0,
            "accuracy": 0.0,
            "correct": 0,
            "total": 0,
            "error": str(e)
        }}
'''

    evaluator_path = os.path.join(work_dir, "evaluator.py")
    with open(evaluator_path, "w") as f:
        f.write(evaluator_code)

    return evaluator_path


def create_config_file(model: str, work_dir: str):
    """Create a config.yaml file for OpenEvolve."""

    # Create custom templates directory for prompt optimization
    templates_dir = os.path.join(work_dir, "templates")
    os.makedirs(templates_dir, exist_ok=True)

    # Create custom system template for PROMPT optimization (not code)
    system_template = """You are an expert prompt engineer tasked with iteratively improving prompts for language models.
Your job is to analyze the current prompt and suggest improvements based on performance feedback.

CRITICAL RULES:
1. Keep prompts BRIEF and DIRECT - shorter is usually better
2. Preserve the EXACT output format that the evaluation expects
3. Do NOT make prompts conversational or verbose
4. Do NOT ask for explanations - just ask for the answer
5. Maintain all placeholder variables like {input}, {text}, etc.
6. Focus on clarity and directness, not linguistic elegance
7. Avoid prompts that might cause the model to discuss multiple possibilities

For classification tasks:
- Ask for direct classification (e.g., "The sentiment is positive")
- Avoid asking "what", "why", or "explain" - just ask for the label
- Ensure the response will include the label word (positive/negative/neutral)
- Keep prompts short enough that responses stay focused
- IMPORTANT: The prompt should naturally cause the model to echo the task type in its response
  (e.g., if classifying sentiment, the response should include the word "sentiment")

Good patterns for classification prompts:
- "[Action] [task_type] [delimiter] {input}" - e.g., "Classify sentiment: {input}"
- "[Task_type] of [delimiter] {input}" - e.g., "Sentiment of: {input}"
- "[Action] the [task_type]: {input}" - e.g., "Determine the sentiment: {input}"

Bad patterns to avoid:
- Questions ("Is this X or Y?", "What is the X?") - too conversational
- No task type mentioned - response won't include the keyword
- Verbose explanations - pushes keywords past evaluation window
- Multiple questions - confuses the model
"""

    with open(os.path.join(templates_dir, "system_message.txt"), "w") as f:
        f.write(system_template)

    # Create custom user template for prompt rewriting
    user_template = """# Current Prompt Performance
- Current metrics: {metrics}
- Areas for improvement: {improvement_areas}

{artifacts}

# Prompt Evolution History
{evolution_history}

# Current Prompt
```text
{current_program}
```

# Task
Rewrite the prompt to MAXIMIZE accuracy on sentiment classification.

CRITICAL REQUIREMENTS:
1. The model's response MUST include the word "sentiment"
2. The model's response MUST include either "positive" or "negative"
3. You MUST keep the {{input}} placeholder exactly as {{input}}

EVALUATION CRITERIA:
- Responses are evaluated by checking if they contain "sentiment" AND ("positive" OR "negative") in the first 150 characters
- The response must match the true label (positive=1, negative=0)

Be creative! Try different approaches:
- Direct instructions vs detailed explanations
- Short prompts vs longer contextual prompts
- Imperative commands vs questions
- System-style vs user-style prompts
- With or without examples/formatting instructions

The goal is to maximize the model's accuracy. Experiment freely!

Output ONLY the new prompt between ```text markers:

```text
Your improved prompt here
```
"""

    with open(os.path.join(templates_dir, "full_rewrite_user.txt"), "w") as f:
        f.write(user_template)

    config = {
        "llm": {
            "primary_model": "meta-llama/llama-3.1-8b-instruct",  # Use STRONGER model for prompt generation
            "api_base": "https://openrouter.ai/api/v1",  # Use OpenRouter endpoint
            "temperature": 1.2,  # Even higher temperature for more creative variations
        },
        "max_iterations": 10,  # More iterations for better convergence
        "checkpoint_interval": 1,  # Save checkpoints every iteration to preserve prompt history
        "diff_based_evolution": False,  # Use full rewrite mode for prompts (not diff/patch mode)
        "language": "text",  # CRITICAL: Optimize text/prompts, not Python code!
        "max_code_length": 40000,  # Allow long prompts (default 10000 is too short)
        "num_islands": 1,  # IMPORTANT: Use only 1 island (not 5) for simpler evolution
        "prompt": {
            "template_dir": templates_dir,  # Use our custom prompt engineering templates
        },
        "evolution": {
            "population_size": 15,  # Larger population = more variants per generation
            "num_islands": 1,  # Single island for simpler evolution
            "elite_ratio": 0.4,  # Keep top 40% (6 best prompts)
            "explore_ratio": 0.1,  # Minimal random exploration (only 1-2 prompts)
            "exploit_ratio": 0.5,  # 50% exploitation of best prompts
        },
        "database": {
            "log_prompts": True,  # Save prompts used to generate each program
            "num_islands": 1,  # CRITICAL: This is where island count is actually read from!
        },
        "evaluator": {
            "timeout": 3600,  # 1 hour timeout (effectively disabled, but prevents NoneType arithmetic errors)
            "cascade_evaluation": False,  # Disable cascade to prevent signal errors
            "parallel_evaluations": 1,  # Single worker to avoid multiprocessing complexity
            "distributed": False,  # No distributed processing
        }
    }

    config_path = os.path.join(work_dir, "config.yaml")
    with open(config_path, "w") as f:
        yaml.dump(config, f)

    return config_path


def optimize_prompt(initial_prompt: str, dataset_name: str, dataset_split: str,
                   model: str, input_field: str, target_field: str,
                   progress=gr.Progress()) -> Tuple[str, str, str]:
    """Run OpenEvolve to optimize the prompt."""

    progress(0, desc="Validating inputs...")

    # Validate all inputs
    is_valid, validation_message = validate_inputs(
        dataset_name, dataset_split, input_field, target_field, initial_prompt
    )

    if not is_valid:
        return f"## Validation Failed\n\n{validation_message}", "", ""

    progress(0.05, desc=f"Validation passed: {validation_message}")

    # Create temporary working directory
    work_dir = tempfile.mkdtemp(prefix="openevolve_")

    try:
        # Save initial prompt with EVOLVE-BLOCK markers for OpenEvolve
        # These markers tell OpenEvolve which part to optimize
        initial_prompt_path = os.path.join(work_dir, "initial_prompt.txt")
        with open(initial_prompt_path, "w") as f:
            # Wrap prompt in evolve markers so OpenEvolve knows what to optimize
            f.write("# EVOLVE-BLOCK-START\n")
            f.write(initial_prompt)
            f.write("\n# EVOLVE-BLOCK-END\n")

        # Create evaluator
        progress(0.1, desc="Creating evaluator...")
        evaluator_path = create_evaluator_file(dataset_name, dataset_split, model,
                                               input_field, target_field, work_dir)

        # Create config
        progress(0.15, desc="Creating configuration...")
        config_path = create_config_file(model, work_dir)

        # Run initial evaluation with 50 samples
        # IMPORTANT: We save the indices to ensure final eval uses THE SAME samples
        progress(0.2, desc="Running initial evaluation on 50 samples...")
        initial_eval = evaluate_prompt(
            initial_prompt, dataset_name, dataset_split, 50,
            model, input_field, target_field
        )

        if "error" in initial_eval:
            return f"## Error\n\n❌ Initial evaluation failed: {initial_eval['error']}", "", ""

        if initial_eval["total"] == 0:
            return f"## Error\n\n❌ Initial evaluation failed: No samples could be evaluated. This usually means:\n- API key is invalid or has no credits\n- Model is unavailable or rate-limited\n- Dataset fields are incorrect\n- Network connectivity issues\n\nPlease check your configuration and try again.", "", ""

        # Save the indices for final evaluation (ensures fair comparison)
        eval_indices = initial_eval.get("indices", [])

        initial_results = f"""
### Initial Prompt Evaluation

**Prompt:**
```
{initial_prompt}
```

**Results:**
- Accuracy: {initial_eval['accuracy']:.2f}%
- Correct: {initial_eval['correct']}/{initial_eval['total']}

**Sample Results:**
"""
        for i, result in enumerate(initial_eval['results'][:5], 1):
            initial_results += f"\n{i}. Input: {result['input']}\n"
            initial_results += f"   Target: {result['target']}\n"
            initial_results += f"   Prediction: {result['prediction']}\n"
            initial_results += f"   βœ“ Correct\n" if result['correct'] else f"   βœ— Incorrect\n"

        # Run OpenEvolve
        progress(0.3, desc="Starting evolution: 10 iterations, 10 variants per generation...")

        output_dir = os.path.join(work_dir, "output")
        os.makedirs(output_dir, exist_ok=True)

        try:
            # Comprehensive fix for "signal only works in main thread" in Gradio
            # We need to prevent OpenEvolve from using signal handlers entirely

            # Step 1: Set environment variable to disable process pool
            import os as os_env
            os_env.environ['OPENEVOLVE_NO_PARALLEL'] = '1'

            # Step 2: Monkey-patch signal module to ignore signal calls in threads
            import signal
            import threading

            original_signal = signal.signal

            def safe_signal(signum, handler):
                """Only set signal handlers in main thread"""
                if threading.current_thread() is threading.main_thread():
                    return original_signal(signum, handler)
                else:
                    # Return a dummy handler in non-main threads
                    return signal.SIG_DFL

            signal.signal = safe_signal

            # Run evolution with signal patch in place
            result = run_evolution(
                initial_program=initial_prompt_path,
                evaluator=evaluator_path,
                config=config_path,
                output_dir=output_dir
            )

            # Restore signal handler
            signal.signal = original_signal

            progress(0.80, desc="Parsing evolution history...")

            # Parse evolution history for visualization
            evolution_viz = parse_evolution_history(output_dir)

            progress(0.85, desc="Evaluating best evolved prompt...")

            # Get the best prompt (OpenEvolve saves to output_dir/best/best_program.txt)
            best_prompt_path = os.path.join(output_dir, "best", "best_program.txt")
            if os.path.exists(best_prompt_path):
                with open(best_prompt_path, "r") as f:
                    best_prompt_raw = f.read()
                # Strip EVOLVE-BLOCK markers that we added
                best_prompt = best_prompt_raw.replace("# EVOLVE-BLOCK-START", "").replace("# EVOLVE-BLOCK-END", "").strip()
                print(f"\n[SELECTION] OpenEvolve selected best prompt from: {best_prompt_path}")
                print(f"[SELECTION] Raw prompt length: {len(best_prompt_raw)} chars")
                print(f"[SELECTION] Best prompt: '{best_prompt[:100].replace(chr(10), ' ')}...'")
            else:
                # Fallback: try without the "best" subdirectory
                best_prompt_path_alt = os.path.join(output_dir, "best_program.txt")
                if os.path.exists(best_prompt_path_alt):
                    with open(best_prompt_path_alt, "r") as f:
                        best_prompt_raw = f.read()
                    # Strip EVOLVE-BLOCK markers
                    best_prompt = best_prompt_raw.replace("# EVOLVE-BLOCK-START", "").replace("# EVOLVE-BLOCK-END", "").strip()
                    print(f"\n[SELECTION] OpenEvolve selected best prompt from: {best_prompt_path_alt}")
                    print(f"[SELECTION] Raw prompt length: {len(best_prompt_raw)} chars")
                    print(f"[SELECTION] Best prompt: '{best_prompt[:100].replace(chr(10), ' ')}...'")
                else:
                    best_prompt = initial_prompt
                    print(f"\n[SELECTION] WARNING: No best_program.txt found, using initial prompt")

            # Final evaluation: Use same 50 samples as initial eval for fair comparison
            progress(0.85, desc="Evaluating best prompt on 50 samples (same as initial)...")
            final_eval = evaluate_prompt(
                best_prompt, dataset_name, dataset_split, 50,
                model, input_field, target_field,
                fixed_indices=eval_indices  # Use same 50 samples as initial eval!
            )

            progress(0.95, desc=f"Evaluation complete: {final_eval['correct']}/{final_eval['total']} = {final_eval['accuracy']:.1f}%")

            final_results = f"""
### Evolved Prompt Evaluation

**Prompt:**
```
{best_prompt}
```

**Validation:**
- Contains {{input}} placeholder: {'βœ“ Yes' if '{input}' in best_prompt else '❌ NO - This will break evaluation!'}
- Prompt length: {len(best_prompt)} characters

**Results:**
- Accuracy: {final_eval['accuracy']:.2f}%
- Correct: {final_eval['correct']}/{final_eval['total']}
- Improvement: {final_eval['accuracy'] - initial_eval['accuracy']:+.2f}%

**Sample Results:**
"""
            for i, result in enumerate(final_eval['results'][:5], 1):
                final_results += f"\n{i}. Input: {result['input']}\n"
                final_results += f"   Target: {result['target']}\n"
                final_results += f"   Prediction: {result['prediction']}\n"
                final_results += f"   βœ“ Correct\n" if result['correct'] else f"   βœ— Incorrect\n"

            summary = f"""
## πŸŽ‰ Optimization Complete!

### Summary
- **Dataset**: {dataset_name} ({dataset_split} split)
- **Evaluation Model**: {model}
- **Evolution Model**: meta-llama/llama-3.1-8b-instruct (larger model for better prompt generation)
- **Initial Eval**: 50 samples
- **Final Eval**: 50 samples (same samples for fair comparison)
- **Evolution**: 50 samples per variant (SAME samples as initial/final!)
- **Iterations**: 10 (population: 15, elite: 40%, explore: 10%, exploit: 50%)

### Results
- **Initial Accuracy**: {initial_eval['accuracy']:.2f}% ({initial_eval['correct']}/{initial_eval['total']})
- **Final Accuracy**: {final_eval['accuracy']:.2f}% ({final_eval['correct']}/{final_eval['total']})
- **Improvement**: {final_eval['accuracy'] - initial_eval['accuracy']:+.2f}%

{validation_message}
"""

            progress(1.0, desc="Complete!")

            return summary, initial_results, final_results

        except Exception as e:
            return f"## Error During Evolution\n\n❌ {str(e)}", initial_results, ""

    finally:
        # Don't clean up - keep prompts for browsing
        # User can manually clean /tmp if needed
        pass


# Create Gradio interface
with gr.Blocks(title="OpenEvolve Prompt Optimizer", theme=gr.themes.Soft()) as demo:
    gr.Markdown("""
    # 🧬 OpenEvolve Prompt Optimizer

    Automatically optimize prompts using evolutionary algorithms. Evolves better prompts by testing on real datasets.

    **Setup**: Duplicate this space, add your OpenRouter API key (`OPENAI_API_KEY`) in Settings β†’ Secrets. Get free key at [openrouter.ai](https://openrouter.ai/)

    **Usage**: Enter initial prompt with `{input}` placeholder β†’ Click optimize β†’ Compare results

    **Model**: `meta-llama/llama-3.2-3b-instruct` (~$0.04 per 1M tokens)
    """)

    with gr.Row():
        with gr.Column():
            gr.Markdown("### Configuration")

            dataset_name = gr.Textbox(
                label="HuggingFace Dataset (Full Name)",
                value="stanfordnlp/imdb",
                placeholder="e.g., stanfordnlp/imdb, gsm8k, MathArena/aime_2025",
                info="Dataset name from HuggingFace Hub. Default: IMDB (sentiment classification)"
            )

            dataset_split = gr.Textbox(
                label="Dataset Split",
                value="test",
                placeholder="e.g., train, test, validation"
            )

            input_field = gr.Textbox(
                label="Input Field Name",
                value="text",
                placeholder="e.g., text, question, sentence",
                info="The field containing inputs to process"
            )

            target_field = gr.Textbox(
                label="Target Field Name",
                value="label",
                placeholder="e.g., label, answer, target",
                info="The field containing expected outputs"
            )

            initial_prompt = gr.TextArea(
                label="Initial Prompt",
                value="Review sentiment {input}",
                lines=5,
                info="Use {input} as placeholder. This baseline scores ~60% - evolution will improve it!"
            )

    # Button outside the column for better visibility
    with gr.Row():
        with gr.Column():
            optimize_btn = gr.Button("πŸš€ Validate & Optimize Prompt", variant="primary", size="lg")

    # Results section - clearly separated
    gr.Markdown("---")
    gr.Markdown("## πŸ“Š Results")

    with gr.Row():
        with gr.Column():
            summary = gr.Markdown("Click 'Validate & Optimize Prompt' to start optimization...", visible=True)

    # Side-by-side comparison: Initial vs Best Prompt
    gr.Markdown("---")
    gr.Markdown("## πŸ” Prompt Comparison: Initial vs Best")

    with gr.Row():
        with gr.Column():
            initial_results = gr.Markdown("### Initial Prompt\nWill appear here after validation...", visible=True)
        with gr.Column():
            final_results = gr.Markdown("### Best Prompt\nWill appear here after optimization...", visible=True)

    # Wire up the optimize button with hardcoded model
    def optimize_with_fixed_model(initial_prompt, dataset_name, dataset_split,
                                   input_field, target_field, progress=gr.Progress()):
        """Wrapper to use fixed model instead of dropdown"""
        return optimize_prompt(
            initial_prompt, dataset_name, dataset_split,
            MODELS[0],  # Use fixed llama-3.2-3b model
            input_field, target_field, progress
        )

    optimize_btn.click(
        fn=optimize_with_fixed_model,
        inputs=[initial_prompt, dataset_name, dataset_split,
                input_field, target_field],
        outputs=[summary, initial_results, final_results]
    )

if __name__ == "__main__":
    demo.launch()