File size: 30,303 Bytes
5d7f7a8
 
 
 
 
e51517c
5d7f7a8
 
e51517c
5d7f7a8
 
e51517c
 
5d7f7a8
4338fb1
5d7f7a8
4338fb1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5d7f7a8
 
e51517c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5d7f7a8
 
 
e51517c
5d7f7a8
 
e51517c
 
 
 
 
 
 
 
 
 
 
5d7f7a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44aa7a0
5d7f7a8
44aa7a0
5d7f7a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e51517c
5d7f7a8
e51517c
5d7f7a8
 
 
 
44aa7a0
 
 
 
 
 
 
5d7f7a8
 
 
 
44aa7a0
5d7f7a8
 
 
 
 
 
44aa7a0
 
 
 
 
 
 
 
 
5d7f7a8
 
 
 
 
 
 
 
 
 
e51517c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5d7f7a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e51517c
 
5d7f7a8
 
e51517c
5d7f7a8
e51517c
 
 
 
5d7f7a8
e51517c
 
 
 
5d7f7a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e51517c
5d7f7a8
 
 
e51517c
5d7f7a8
 
e51517c
5d7f7a8
 
44aa7a0
e51517c
 
44aa7a0
 
 
5d7f7a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e51517c
5d7f7a8
 
 
 
 
 
 
44aa7a0
 
 
 
5d7f7a8
 
e51517c
 
 
 
 
 
5d7f7a8
 
 
 
 
 
 
 
 
 
 
 
e51517c
5d7f7a8
 
 
 
 
 
 
 
 
 
 
 
 
e51517c
5d7f7a8
 
 
 
 
 
 
 
 
 
e51517c
5d7f7a8
 
e51517c
 
 
 
 
 
 
 
 
 
 
5d7f7a8
 
 
 
e51517c
5d7f7a8
 
e51517c
5d7f7a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e51517c
5d7f7a8
 
 
 
e51517c
 
 
 
 
 
 
 
5d7f7a8
 
 
 
 
 
 
 
 
 
4338fb1
5d7f7a8
 
 
e51517c
 
 
 
5d7f7a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32cad41
 
 
e51517c
5d7f7a8
32cad41
 
 
 
5d7f7a8
 
32cad41
5d7f7a8
 
 
32cad41
5d7f7a8
32cad41
5d7f7a8
e51517c
 
32cad41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5d7f7a8
 
 
e51517c
5d7f7a8
e51517c
5d7f7a8
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
import gradio as gr
import os
import yaml
import json
import random
from datasets import load_dataset, get_dataset_config_names, get_dataset_split_names
from openai import OpenAI
from openevolve import run_evolution
from typing import Dict, List, Tuple, Optional
import tempfile
import shutil
import requests
import glob

# Free models from OpenRouter (as of 2025) - Comprehensive list
FREE_MODELS = [
    # Top-tier (heavily rate-limited)
    "meta-llama/llama-3.1-405b-instruct:free",  # 405B - Top-tier reasoning, multilingual
    "nousresearch/hermes-3-llama-3.1-405b:free",  # 405B - Creative/roleplay fine-tune

    # High-capability (rate-limited)
    "qwen/qwen2.5-72b-instruct:free",  # 72B - Strong in coding/math/multilingual
    "meta-llama/llama-3.1-70b-instruct:free",  # 70B - Advanced reasoning
    "mistralai/mixtral-8x7b-instruct:free",  # 46.7B equiv - MoE efficient
    "deepseek/deepseek-chat:free",  # 67B - Conversational focus
    "deepseek/deepseek-coder:free",  # 33B - Coding specialist

    # Mid-tier (good balance)
    "qwen/qwen2.5-32b-instruct:free",  # 32B - Detailed responses, math/coding
    "google/gemma-2-27b-it:free",  # 27B - Strong instruction-tuned
    "qwen/qwen2.5-14b-instruct:free",  # 14B - Mid-level tasks
    "microsoft/phi-3-medium-128k-instruct:free",  # 14B - Long context
    "mistralai/pixtral-12b-2409:free",  # 12B - Multimodal (text+image)

    # Efficient (7-9B)
    "qwen/qwen2.5-7b-instruct:free",  # 7B - Balanced instruct
    "meta-llama/llama-3-8b-instruct:free",  # 8B - General-purpose
    "meta-llama/llama-3.1-8b-instruct:free",  # 8B - Improved multilingual
    "google/gemma-2-9b-it:free",  # 9B - Quick capable responses
    "microsoft/phi-3-small-128k-instruct:free",  # 7B - Extended context
    "mistralai/mistral-7b-instruct:free",  # 7B - Reliable baseline
    "nousresearch/nous-hermes-2-mixtral-8x7b-dpo:free",  # 46.7B equiv - Helpful aligned
    "cognitivecomputations/dolphin-2.9-llama3-8b:free",  # 8B - Uncensored
    "huggingfaceh4/zephyr-7b-beta:free",  # 7B - Basic assistance
    "teknium/openhermes-2.5-mistral-7b:free",  # 7B - Creative

    # Lightweight (3-4B)
    "openai/gpt-4o-mini:free",  # ~8B equiv - Fast, capable mini
    "undi95/replit-code-v1.5-3b-instruct:free",  # 3B - Code-focused
    "meta-llama/llama-3.2-3b-instruct:free",  # 3B - Compact text gen
    "qwen/qwen2.5-3b-instruct:free",  # 3B - Quick responses
    "sophosympatheia/nemotron-mini-4b-instruct:free",  # 4B - Entry-level
    "microsoft/phi-3-mini-128k-instruct:free",  # 3.8B - Long context
    "microsoft/phi-3-mini-4k-instruct:free",  # 3.8B - Standard

    # Ultra-light (0.5-1.5B)
    "qwen/qwen2.5-1.5b-instruct:free",  # 1.5B - Lightweight apps
    "meta-llama/llama-3.2-1b-instruct:free",  # 1B - Ultra-light multimodal
    "qwen/qwen2.5-0.5b-instruct:free",  # 0.5B - Minimalist
]


def validate_dataset(dataset_name: str, split: str, input_field: str, target_field: str) -> Tuple[bool, str]:
    """
    Validate that the dataset exists and has the required fields.

    Returns:
        Tuple of (is_valid, error_message)
    """
    try:
        # Check if dataset name has correct format (should be org/name or just name)
        if not dataset_name or dataset_name.strip() == "":
            return False, "โŒ Dataset name cannot be empty"

        dataset_name = dataset_name.strip()

        # Try to get dataset info from HuggingFace API
        hf_token = os.environ.get("HF_TOKEN", None)
        headers = {}
        if hf_token:
            headers["Authorization"] = f"Bearer {hf_token}"

        # Check if dataset exists on HuggingFace Hub
        api_url = f"https://huggingface.co/api/datasets/{dataset_name}"
        response = requests.get(api_url, headers=headers, timeout=10)

        if response.status_code == 404:
            return False, f"โŒ Dataset '{dataset_name}' not found on HuggingFace Hub. Please use the full dataset name (e.g., 'stanfordnlp/imdb' or 'gsm8k')"
        elif response.status_code != 200:
            # Try to load anyway - might be a private dataset or API issue
            print(f"Warning: Could not verify dataset via API (status {response.status_code}), attempting to load...")

        # Try to load a small sample to verify it works and check fields
        print(f"Loading dataset {dataset_name} with split {split}...")

        # First, check if the split exists
        try:
            available_splits = get_dataset_split_names(dataset_name)
            if split not in available_splits:
                return False, f"โŒ Split '{split}' not found. Available splits: {', '.join(available_splits)}"
        except Exception as e:
            print(f"Could not get split names: {e}. Will try to load anyway...")

        # Load a small sample to check fields
        dataset = load_dataset(dataset_name, split=split, streaming=True)

        # Get first example to check fields
        first_example = next(iter(dataset))
        available_fields = list(first_example.keys())

        # Check if input field exists
        if input_field not in available_fields:
            return False, f"โŒ Input field '{input_field}' not found. Available fields: {', '.join(available_fields)}"

        # Check if target field exists
        if target_field not in available_fields:
            return False, f"โŒ Target field '{target_field}' not found. Available fields: {', '.join(available_fields)}"

        # All validations passed
        return True, f"โœ… Dataset validated successfully! Fields '{input_field}' and '{target_field}' found."

    except Exception as e:
        error_msg = str(e)
        if "404" in error_msg or "not found" in error_msg.lower():
            return False, f"โŒ Dataset '{dataset_name}' not found. Please check the dataset name (use format: org/dataset-name)"
        return False, f"โŒ Error validating dataset: {error_msg}"


def validate_inputs(dataset_name: str, split: str, input_field: str, target_field: str,
                   initial_prompt: str) -> Tuple[bool, str]:
    """
    Validate all inputs before starting optimization.

    Returns:
        Tuple of (is_valid, message)
    """
    # Check API key
    api_key = os.environ.get("OPENAI_API_KEY")
    if not api_key:
        return False, "โŒ OPENAI_API_KEY environment variable not set. Please set it in the Space secrets."

    # Check prompt contains {input} placeholder
    if "{input}" not in initial_prompt:
        return False, "โŒ Prompt must contain '{input}' placeholder for dataset inputs"

    # Check dataset name format
    dataset_name = dataset_name.strip()
    if not dataset_name:
        return False, "โŒ Dataset name cannot be empty"

    # Validate dataset and fields
    is_valid, message = validate_dataset(dataset_name, split, input_field, target_field)
    if not is_valid:
        return False, message

    return True, message


def evaluate_prompt(prompt: str, dataset_name: str, split: str, num_samples: int,
                    model: str, input_field: str, target_field: str) -> Dict:
    """Evaluate a prompt on a dataset using the selected model."""
    try:
        # Get API key from environment
        api_key = os.environ.get("OPENAI_API_KEY")
        if not api_key:
            return {
                "error": "OPENAI_API_KEY not set in environment",
                "accuracy": 0,
                "correct": 0,
                "total": 0,
                "results": []
            }

        # Load dataset
        dataset = load_dataset(dataset_name, split=split, streaming=False)

        # Sample random examples
        if len(dataset) > num_samples:
            indices = random.sample(range(len(dataset)), num_samples)
            samples = [dataset[i] for i in indices]
        else:
            samples = list(dataset)[:num_samples]

        # Initialize OpenAI client with OpenRouter
        client = OpenAI(
            base_url="https://openrouter.ai/api/v1",
            api_key=api_key,
        )

        correct = 0
        total = 0
        results = []
        errors = []

        for idx, sample in enumerate(samples):
            try:
                # Get input and target
                input_text = sample.get(input_field, "")
                if isinstance(input_text, dict):
                    input_text = str(input_text)

                target = sample.get(target_field, "")
                if isinstance(target, dict):
                    target = str(target)

                # Format the prompt with the input
                formatted_prompt = prompt.replace("{input}", str(input_text))

                # Call the model
                response = client.chat.completions.create(
                    model=model,
                    messages=[
                        {"role": "system", "content": "You are a helpful assistant."},
                        {"role": "user", "content": formatted_prompt}
                    ],
                    temperature=0.1,
                    max_tokens=500,
                )

                prediction = response.choices[0].message.content.strip()

                # Simple exact match evaluation
                is_correct = str(target).lower().strip() in prediction.lower()
                if is_correct:
                    correct += 1
                total += 1

                results.append({
                    "input": str(input_text)[:100] + "..." if len(str(input_text)) > 100 else str(input_text),
                    "target": str(target),
                    "prediction": prediction[:100] + "..." if len(prediction) > 100 else prediction,
                    "correct": is_correct
                })

            except Exception as e:
                error_msg = f"Sample {idx+1}: {str(e)}"
                print(f"Error evaluating sample {idx+1}: {e}")
                errors.append(error_msg)
                # Only continue if we haven't failed on all samples
                if len(errors) > len(samples) // 2:  # More than half failed
                    print(f"Too many errors ({len(errors)} out of {len(samples)}), stopping evaluation")
                    break
                continue

        accuracy = (correct / total * 100) if total > 0 else 0

        result_dict = {
            "accuracy": accuracy,
            "correct": correct,
            "total": total,
            "results": results
        }

        # Add errors if any occurred
        if errors:
            result_dict["errors"] = errors
            if total == 0:
                # All samples failed - create a helpful error message
                result_dict["error"] = f"All {len(samples)} samples failed to evaluate. First few errors:\n" + "\n".join(errors[:3])

        return result_dict

    except Exception as e:
        return {
            "error": str(e),
            "accuracy": 0,
            "correct": 0,
            "total": 0,
            "results": []
        }


def parse_evolution_history(output_dir: str) -> str:
    """
    Parse evolution history from OpenEvolve output directory.

    Returns a markdown string with visualization of the evolution process.
    """
    try:
        evolution_viz = "## ๐Ÿงฌ Evolution Progress\n\n"

        # Look for generation files or logs
        generation_files = sorted(glob.glob(os.path.join(output_dir, "generation_*.txt")))
        log_file = os.path.join(output_dir, "evolution.log")

        # Try to parse generation files if they exist
        if generation_files:
            evolution_viz += "### Generation-by-Generation Progress\n\n"
            for gen_file in generation_files:
                gen_num = os.path.basename(gen_file).replace("generation_", "").replace(".txt", "")
                try:
                    with open(gen_file, 'r') as f:
                        content = f.read()
                    evolution_viz += f"**Generation {gen_num}:**\n```\n{content[:200]}{'...' if len(content) > 200 else ''}\n```\n\n"
                except:
                    pass

        # Try to parse log file
        elif os.path.exists(log_file):
            evolution_viz += "### Evolution Log\n\n"
            try:
                with open(log_file, 'r') as f:
                    log_content = f.read()
                evolution_viz += f"```\n{log_content[-1000:]}\n```\n\n"
            except:
                pass

        # Look for scores or history file
        scores_file = os.path.join(output_dir, "scores.json")
        if os.path.exists(scores_file):
            try:
                with open(scores_file, 'r') as f:
                    scores = json.load(f)

                evolution_viz += "### Score Progression\n\n"
                evolution_viz += "| Generation | Best Score | Avg Score | Population |\n"
                evolution_viz += "|------------|-----------|-----------|------------|\n"

                for gen in scores:
                    evolution_viz += f"| {gen['generation']} | {gen['best']:.3f} | {gen['avg']:.3f} | {gen['population']} |\n"

                evolution_viz += "\n"
            except:
                pass

        # Look for all program variants
        program_files = sorted(glob.glob(os.path.join(output_dir, "program_*.txt")))
        if program_files:
            evolution_viz += f"### Explored Variants\n\n"
            evolution_viz += f"OpenEvolve explored {len(program_files)} different prompt variants during evolution.\n\n"

            # Show a few intermediate prompts
            if len(program_files) > 3:
                sample_files = [program_files[0], program_files[len(program_files)//2], program_files[-2]]
                evolution_viz += "**Sample Intermediate Prompts:**\n\n"
                for idx, pfile in enumerate(sample_files, 1):
                    try:
                        with open(pfile, 'r') as f:
                            prompt_content = f.read()
                        evolution_viz += f"**Variant {idx}:**\n```\n{prompt_content[:150]}{'...' if len(prompt_content) > 150 else ''}\n```\n\n"
                    except:
                        pass

        # If no specific files found, show directory contents
        if not generation_files and not os.path.exists(log_file) and not os.path.exists(scores_file):
            evolution_viz += "### Evolution Complete\n\n"
            evolution_viz += "OpenEvolve ran 10 iterations of evolutionary optimization using:\n"
            evolution_viz += "- **Population Size**: 10 prompts per generation\n"
            evolution_viz += "- **Selection Strategy**: 10% elite, 30% explore, 60% exploit\n"
            evolution_viz += "- **Islands**: 1 population with mutation and crossover\n"
            evolution_viz += "- **Evaluation**: 100 samples per prompt variant\n\n"

            # Count files in output directory
            all_files = os.listdir(output_dir)
            evolution_viz += f"Generated {len(all_files)} files during evolution process.\n\n"

        return evolution_viz

    except Exception as e:
        return f"## ๐Ÿงฌ Evolution Progress\n\nEvolution completed successfully. Unable to parse detailed history: {str(e)}\n\n"


def create_evaluator_file(dataset_name: str, split: str, model: str,
                         input_field: str, target_field: str, work_dir: str):
    """Create an evaluator.py file for OpenEvolve."""
    evaluator_code = f'''
import os
import random
from datasets import load_dataset
from openai import OpenAI

def evaluate(prompt: str) -> float:
    """Evaluate a prompt and return a score between 0 and 1."""
    try:
        # Load dataset
        dataset = load_dataset("{dataset_name}", split="{split}", streaming=False)

        # Sample 100 random examples
        num_samples = min(100, len(dataset))
        if len(dataset) > num_samples:
            indices = random.sample(range(len(dataset)), num_samples)
            samples = [dataset[i] for i in indices]
        else:
            samples = list(dataset)[:num_samples]

        # Initialize OpenAI client
        api_key = os.environ.get("OPENAI_API_KEY")
        client = OpenAI(
            base_url="https://openrouter.ai/api/v1",
            api_key=api_key,
        )

        correct = 0
        total = 0

        for sample in samples:
            try:
                # Get input and target
                input_text = sample.get("{input_field}", "")
                if isinstance(input_text, dict):
                    input_text = str(input_text)

                target = sample.get("{target_field}", "")
                if isinstance(target, dict):
                    target = str(target)

                # Format the prompt
                formatted_prompt = prompt.replace("{{input}}", str(input_text))

                # Call the model
                response = client.chat.completions.create(
                    model="{model}",
                    messages=[
                        {{"role": "system", "content": "You are a helpful assistant."}},
                        {{"role": "user", "content": formatted_prompt}}
                    ],
                    temperature=0.1,
                    max_tokens=500,
                )

                prediction = response.choices[0].message.content.strip()

                # Simple evaluation
                is_correct = str(target).lower().strip() in prediction.lower()
                if is_correct:
                    correct += 1
                total += 1

            except Exception as e:
                print(f"Error evaluating sample: {{e}}")
                continue

        # Return score between 0 and 1
        return (correct / total) if total > 0 else 0.0

    except Exception as e:
        print(f"Error in evaluation: {{e}}")
        return 0.0
'''

    evaluator_path = os.path.join(work_dir, "evaluator.py")
    with open(evaluator_path, "w") as f:
        f.write(evaluator_code)

    return evaluator_path


def create_config_file(model: str, work_dir: str):
    """Create a config.yaml file for OpenEvolve."""
    config = {
        "llm": {
            "api_base": "https://openrouter.ai/api/v1",
            "model": model,
            "temperature": 0.7,
            "max_tokens": 4096,
        },
        "evolution": {
            "max_iterations": 10,
            "population_size": 10,
            "num_islands": 1,
            "elite_ratio": 0.1,
            "explore_ratio": 0.3,
            "exploit_ratio": 0.6,
        },
        "evaluation": {
            "timeout": 1800,
        }
    }

    config_path = os.path.join(work_dir, "config.yaml")
    with open(config_path, "w") as f:
        yaml.dump(config, f)

    return config_path


def optimize_prompt(initial_prompt: str, dataset_name: str, dataset_split: str,
                   model: str, input_field: str, target_field: str,
                   progress=gr.Progress()) -> Tuple[str, str, str, str]:
    """Run OpenEvolve to optimize the prompt."""

    progress(0, desc="Validating inputs...")

    # Validate all inputs
    is_valid, validation_message = validate_inputs(
        dataset_name, dataset_split, input_field, target_field, initial_prompt
    )

    if not is_valid:
        return f"## Validation Failed\n\n{validation_message}", "", "", ""

    progress(0.05, desc=f"Validation passed: {validation_message}")

    # Create temporary working directory
    work_dir = tempfile.mkdtemp(prefix="openevolve_")

    try:
        # Save initial prompt
        initial_prompt_path = os.path.join(work_dir, "initial_prompt.txt")
        with open(initial_prompt_path, "w") as f:
            f.write(initial_prompt)

        # Create evaluator
        progress(0.1, desc="Creating evaluator...")
        evaluator_path = create_evaluator_file(dataset_name, dataset_split, model,
                                               input_field, target_field, work_dir)

        # Create config
        progress(0.15, desc="Creating configuration...")
        config_path = create_config_file(model, work_dir)

        # Run initial evaluation
        progress(0.2, desc="Running initial evaluation on 100 samples...")
        initial_eval = evaluate_prompt(
            initial_prompt, dataset_name, dataset_split, 100,
            model, input_field, target_field
        )

        if "error" in initial_eval:
            return f"## Error\n\nโŒ Initial evaluation failed: {initial_eval['error']}", "", "", ""

        if initial_eval["total"] == 0:
            return f"## Error\n\nโŒ Initial evaluation failed: No samples could be evaluated. This usually means:\n- API key is invalid or has no credits\n- Model is unavailable or rate-limited\n- Dataset fields are incorrect\n- Network connectivity issues\n\nPlease check your configuration and try again.", "", "", ""

        initial_results = f"""
### Initial Prompt Evaluation

**Prompt:**
```
{initial_prompt}
```

**Results:**
- Accuracy: {initial_eval['accuracy']:.2f}%
- Correct: {initial_eval['correct']}/{initial_eval['total']}

**Sample Results:**
"""
        for i, result in enumerate(initial_eval['results'][:5], 1):
            initial_results += f"\n{i}. Input: {result['input']}\n"
            initial_results += f"   Target: {result['target']}\n"
            initial_results += f"   Prediction: {result['prediction']}\n"
            initial_results += f"   โœ“ Correct\n" if result['correct'] else f"   โœ— Incorrect\n"

        # Run OpenEvolve
        progress(0.3, desc="Starting OpenEvolve optimization (10 iterations, ~5-15 minutes)...")

        output_dir = os.path.join(work_dir, "output")
        os.makedirs(output_dir, exist_ok=True)

        try:
            # Run evolution
            result = run_evolution(
                initial_program=initial_prompt_path,
                evaluator=evaluator_path,
                config=config_path,
                output_dir=output_dir
            )

            progress(0.80, desc="Parsing evolution history...")

            # Parse evolution history for visualization
            evolution_viz = parse_evolution_history(output_dir)

            progress(0.85, desc="Evaluating best evolved prompt...")

            # Get the best prompt
            best_prompt_path = os.path.join(output_dir, "best_program.txt")
            if os.path.exists(best_prompt_path):
                with open(best_prompt_path, "r") as f:
                    best_prompt = f.read()
            else:
                best_prompt = initial_prompt

            # Evaluate best prompt
            final_eval = evaluate_prompt(
                best_prompt, dataset_name, dataset_split, 100,
                model, input_field, target_field
            )

            final_results = f"""
### Evolved Prompt Evaluation

**Prompt:**
```
{best_prompt}
```

**Results:**
- Accuracy: {final_eval['accuracy']:.2f}%
- Correct: {final_eval['correct']}/{final_eval['total']}
- Improvement: {final_eval['accuracy'] - initial_eval['accuracy']:+.2f}%

**Sample Results:**
"""
            for i, result in enumerate(final_eval['results'][:5], 1):
                final_results += f"\n{i}. Input: {result['input']}\n"
                final_results += f"   Target: {result['target']}\n"
                final_results += f"   Prediction: {result['prediction']}\n"
                final_results += f"   โœ“ Correct\n" if result['correct'] else f"   โœ— Incorrect\n"

            summary = f"""
## ๐ŸŽ‰ Optimization Complete!

### Summary
- **Dataset**: {dataset_name} ({dataset_split} split)
- **Model**: {model}
- **Samples**: 100 per evaluation
- **Iterations**: 10

### Results
- **Initial Accuracy**: {initial_eval['accuracy']:.2f}%
- **Final Accuracy**: {final_eval['accuracy']:.2f}%
- **Improvement**: {final_eval['accuracy'] - initial_eval['accuracy']:+.2f}%

{validation_message}
"""

            progress(1.0, desc="Complete!")

            return summary, initial_results, evolution_viz, final_results

        except Exception as e:
            return f"## Error During Evolution\n\nโŒ {str(e)}", initial_results, "", ""

    finally:
        # Clean up
        try:
            shutil.rmtree(work_dir)
        except:
            pass


# Create Gradio interface
with gr.Blocks(title="OpenEvolve Prompt Optimizer", theme=gr.themes.Soft()) as demo:
    gr.Markdown("""
    # ๐Ÿงฌ OpenEvolve Prompt Optimizer

    Automatically evolve and optimize your prompts using evolutionary algorithms!

    This space uses [OpenEvolve](https://github.com/algorithmicsuperintelligence/openevolve) to iteratively improve prompts
    by testing them on real datasets and evolving better versions.

    ## How it works:
    1. Enter an initial prompt (use `{input}` as a placeholder for dataset inputs)
    2. Enter the full HuggingFace dataset name (e.g., `stanfordnlp/imdb`, `gsm8k`)
    3. Specify the dataset split and field names
    4. Choose a free model from OpenRouter
    5. Click "Optimize Prompt" - the system will validate everything first!
    6. Watch the evolution progress in real-time
    7. Compare initial vs. evolved performance!

    **Note**: API key is read from `OPENAI_API_KEY` environment variable (set in Space secrets)
    """)

    with gr.Row():
        with gr.Column():
            gr.Markdown("### Configuration")

            model = gr.Dropdown(
                choices=FREE_MODELS,
                value=FREE_MODELS[0],
                label="Select Model",
                info="Choose from 30+ free models on OpenRouter (0.5B to 405B parameters)"
            )

            dataset_name = gr.Textbox(
                label="HuggingFace Dataset (Full Name)",
                value="stanfordnlp/imdb",
                placeholder="e.g., stanfordnlp/imdb, openai/gsm8k, SetFit/sst5",
                info="Full dataset name from HuggingFace Hub (org/dataset-name or dataset-name)"
            )

            dataset_split = gr.Textbox(
                label="Dataset Split",
                value="test",
                placeholder="e.g., train, test, validation"
            )

            input_field = gr.Textbox(
                label="Input Field Name",
                value="text",
                placeholder="e.g., text, question, context",
                info="The field containing inputs to process"
            )

            target_field = gr.Textbox(
                label="Target Field Name",
                value="label",
                placeholder="e.g., label, answer, target",
                info="The field containing expected outputs"
            )

            initial_prompt = gr.TextArea(
                label="Initial Prompt",
                value="Analyze the sentiment of the following text and classify it as positive or negative:\n\n{input}\n\nClassification:",
                lines=6,
                info="Use {input} as placeholder for dataset inputs"
            )

    # Button outside the column for better visibility
    with gr.Row():
        with gr.Column():
            optimize_btn = gr.Button("๐Ÿš€ Validate & Optimize Prompt", variant="primary", size="lg")

    # Results section - clearly separated
    gr.Markdown("---")
    gr.Markdown("## ๐Ÿ“Š Results")

    with gr.Row():
        with gr.Column():
            summary = gr.Markdown("Click 'Validate & Optimize Prompt' to start optimization...", visible=True)

    with gr.Row():
        with gr.Column():
            initial_results = gr.Markdown("### Initial Results\nWill appear here after validation...", visible=True)
        with gr.Column():
            final_results = gr.Markdown("### Final Results\nWill appear here after optimization...", visible=True)

    with gr.Row():
        with gr.Column():
            evolution_progress = gr.Markdown("### Evolution Progress\nEvolution progress will appear here during optimization...", visible=True)

    # Documentation section - in collapsible accordion
    gr.Markdown("---")
    with gr.Accordion("๐Ÿ“š Documentation & Examples", open=False):
        gr.Markdown("""
        ### Example Datasets & Fields:

        | Dataset | Split | Input Field | Target Field | Task |
        |---------|-------|-------------|--------------|------|
        | stanfordnlp/imdb | test | text | label | Sentiment Analysis |
        | rajpurkar/squad | validation | question | answers | Question Answering |
        | dair-ai/emotion | test | text | label | Emotion Classification |
        | openai/gsm8k | test | question | answer | Math Reasoning |
        | fancyzhx/ag_news | test | text | label | News Classification |

        ### About This Demo Space:

        **This is a demonstration space** showcasing OpenEvolve's prompt optimization capabilities.
        The interface shows you how the system works, but **you'll need to set up your own instance to run optimizations**.

        ### How to Run This Yourself:

        1. **Clone this Space**: Click "โ‹ฎ" (three dots) at top-right โ†’ "Duplicate this Space"
        2. **Set Environment Variables** in your cloned Space's settings:
           - `OPENAI_API_KEY`: Your OpenRouter API key (get free key at [openrouter.ai/keys](https://openrouter.ai/keys))
           - `HF_TOKEN`: (Optional) HuggingFace token for private datasets
        3. **Configure Your Optimization**:
           - Dataset: Use full name format (e.g., `stanfordnlp/imdb` or `openai/gsm8k`)
           - Fields: Specify exact field names from the dataset schema
           - Model: Choose from 30+ free models (larger models = better results but slower/rate-limited)
        4. **Run & Monitor**:
           - All inputs are validated before starting
           - Evolution takes 5-15 minutes (10 iterations, 100 samples per evaluation)
           - Watch evolution progress visualization in real-time

        ### About OpenEvolve:
        OpenEvolve is an open-source evolutionary optimization framework. Learn more at:
        - [GitHub Repository](https://github.com/algorithmicsuperintelligence/openevolve)
        - [Documentation](https://github.com/algorithmicsuperintelligence/openevolve#readme)
        """)

    optimize_btn.click(
        fn=optimize_prompt,
        inputs=[initial_prompt, dataset_name, dataset_split, model,
                input_field, target_field],
        outputs=[summary, initial_results, evolution_progress, final_results]
    )

if __name__ == "__main__":
    demo.launch()