File size: 30,303 Bytes
5d7f7a8 e51517c 5d7f7a8 e51517c 5d7f7a8 e51517c 5d7f7a8 4338fb1 5d7f7a8 4338fb1 5d7f7a8 e51517c 5d7f7a8 e51517c 5d7f7a8 e51517c 5d7f7a8 44aa7a0 5d7f7a8 44aa7a0 5d7f7a8 e51517c 5d7f7a8 e51517c 5d7f7a8 44aa7a0 5d7f7a8 44aa7a0 5d7f7a8 44aa7a0 5d7f7a8 e51517c 5d7f7a8 e51517c 5d7f7a8 e51517c 5d7f7a8 e51517c 5d7f7a8 e51517c 5d7f7a8 e51517c 5d7f7a8 e51517c 5d7f7a8 e51517c 5d7f7a8 44aa7a0 e51517c 44aa7a0 5d7f7a8 e51517c 5d7f7a8 44aa7a0 5d7f7a8 e51517c 5d7f7a8 e51517c 5d7f7a8 e51517c 5d7f7a8 e51517c 5d7f7a8 e51517c 5d7f7a8 e51517c 5d7f7a8 e51517c 5d7f7a8 e51517c 5d7f7a8 e51517c 5d7f7a8 4338fb1 5d7f7a8 e51517c 5d7f7a8 32cad41 e51517c 5d7f7a8 32cad41 5d7f7a8 32cad41 5d7f7a8 32cad41 5d7f7a8 32cad41 5d7f7a8 e51517c 32cad41 5d7f7a8 e51517c 5d7f7a8 e51517c 5d7f7a8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 |
import gradio as gr
import os
import yaml
import json
import random
from datasets import load_dataset, get_dataset_config_names, get_dataset_split_names
from openai import OpenAI
from openevolve import run_evolution
from typing import Dict, List, Tuple, Optional
import tempfile
import shutil
import requests
import glob
# Free models from OpenRouter (as of 2025) - Comprehensive list
FREE_MODELS = [
# Top-tier (heavily rate-limited)
"meta-llama/llama-3.1-405b-instruct:free", # 405B - Top-tier reasoning, multilingual
"nousresearch/hermes-3-llama-3.1-405b:free", # 405B - Creative/roleplay fine-tune
# High-capability (rate-limited)
"qwen/qwen2.5-72b-instruct:free", # 72B - Strong in coding/math/multilingual
"meta-llama/llama-3.1-70b-instruct:free", # 70B - Advanced reasoning
"mistralai/mixtral-8x7b-instruct:free", # 46.7B equiv - MoE efficient
"deepseek/deepseek-chat:free", # 67B - Conversational focus
"deepseek/deepseek-coder:free", # 33B - Coding specialist
# Mid-tier (good balance)
"qwen/qwen2.5-32b-instruct:free", # 32B - Detailed responses, math/coding
"google/gemma-2-27b-it:free", # 27B - Strong instruction-tuned
"qwen/qwen2.5-14b-instruct:free", # 14B - Mid-level tasks
"microsoft/phi-3-medium-128k-instruct:free", # 14B - Long context
"mistralai/pixtral-12b-2409:free", # 12B - Multimodal (text+image)
# Efficient (7-9B)
"qwen/qwen2.5-7b-instruct:free", # 7B - Balanced instruct
"meta-llama/llama-3-8b-instruct:free", # 8B - General-purpose
"meta-llama/llama-3.1-8b-instruct:free", # 8B - Improved multilingual
"google/gemma-2-9b-it:free", # 9B - Quick capable responses
"microsoft/phi-3-small-128k-instruct:free", # 7B - Extended context
"mistralai/mistral-7b-instruct:free", # 7B - Reliable baseline
"nousresearch/nous-hermes-2-mixtral-8x7b-dpo:free", # 46.7B equiv - Helpful aligned
"cognitivecomputations/dolphin-2.9-llama3-8b:free", # 8B - Uncensored
"huggingfaceh4/zephyr-7b-beta:free", # 7B - Basic assistance
"teknium/openhermes-2.5-mistral-7b:free", # 7B - Creative
# Lightweight (3-4B)
"openai/gpt-4o-mini:free", # ~8B equiv - Fast, capable mini
"undi95/replit-code-v1.5-3b-instruct:free", # 3B - Code-focused
"meta-llama/llama-3.2-3b-instruct:free", # 3B - Compact text gen
"qwen/qwen2.5-3b-instruct:free", # 3B - Quick responses
"sophosympatheia/nemotron-mini-4b-instruct:free", # 4B - Entry-level
"microsoft/phi-3-mini-128k-instruct:free", # 3.8B - Long context
"microsoft/phi-3-mini-4k-instruct:free", # 3.8B - Standard
# Ultra-light (0.5-1.5B)
"qwen/qwen2.5-1.5b-instruct:free", # 1.5B - Lightweight apps
"meta-llama/llama-3.2-1b-instruct:free", # 1B - Ultra-light multimodal
"qwen/qwen2.5-0.5b-instruct:free", # 0.5B - Minimalist
]
def validate_dataset(dataset_name: str, split: str, input_field: str, target_field: str) -> Tuple[bool, str]:
"""
Validate that the dataset exists and has the required fields.
Returns:
Tuple of (is_valid, error_message)
"""
try:
# Check if dataset name has correct format (should be org/name or just name)
if not dataset_name or dataset_name.strip() == "":
return False, "โ Dataset name cannot be empty"
dataset_name = dataset_name.strip()
# Try to get dataset info from HuggingFace API
hf_token = os.environ.get("HF_TOKEN", None)
headers = {}
if hf_token:
headers["Authorization"] = f"Bearer {hf_token}"
# Check if dataset exists on HuggingFace Hub
api_url = f"https://huggingface.co/api/datasets/{dataset_name}"
response = requests.get(api_url, headers=headers, timeout=10)
if response.status_code == 404:
return False, f"โ Dataset '{dataset_name}' not found on HuggingFace Hub. Please use the full dataset name (e.g., 'stanfordnlp/imdb' or 'gsm8k')"
elif response.status_code != 200:
# Try to load anyway - might be a private dataset or API issue
print(f"Warning: Could not verify dataset via API (status {response.status_code}), attempting to load...")
# Try to load a small sample to verify it works and check fields
print(f"Loading dataset {dataset_name} with split {split}...")
# First, check if the split exists
try:
available_splits = get_dataset_split_names(dataset_name)
if split not in available_splits:
return False, f"โ Split '{split}' not found. Available splits: {', '.join(available_splits)}"
except Exception as e:
print(f"Could not get split names: {e}. Will try to load anyway...")
# Load a small sample to check fields
dataset = load_dataset(dataset_name, split=split, streaming=True)
# Get first example to check fields
first_example = next(iter(dataset))
available_fields = list(first_example.keys())
# Check if input field exists
if input_field not in available_fields:
return False, f"โ Input field '{input_field}' not found. Available fields: {', '.join(available_fields)}"
# Check if target field exists
if target_field not in available_fields:
return False, f"โ Target field '{target_field}' not found. Available fields: {', '.join(available_fields)}"
# All validations passed
return True, f"โ
Dataset validated successfully! Fields '{input_field}' and '{target_field}' found."
except Exception as e:
error_msg = str(e)
if "404" in error_msg or "not found" in error_msg.lower():
return False, f"โ Dataset '{dataset_name}' not found. Please check the dataset name (use format: org/dataset-name)"
return False, f"โ Error validating dataset: {error_msg}"
def validate_inputs(dataset_name: str, split: str, input_field: str, target_field: str,
initial_prompt: str) -> Tuple[bool, str]:
"""
Validate all inputs before starting optimization.
Returns:
Tuple of (is_valid, message)
"""
# Check API key
api_key = os.environ.get("OPENAI_API_KEY")
if not api_key:
return False, "โ OPENAI_API_KEY environment variable not set. Please set it in the Space secrets."
# Check prompt contains {input} placeholder
if "{input}" not in initial_prompt:
return False, "โ Prompt must contain '{input}' placeholder for dataset inputs"
# Check dataset name format
dataset_name = dataset_name.strip()
if not dataset_name:
return False, "โ Dataset name cannot be empty"
# Validate dataset and fields
is_valid, message = validate_dataset(dataset_name, split, input_field, target_field)
if not is_valid:
return False, message
return True, message
def evaluate_prompt(prompt: str, dataset_name: str, split: str, num_samples: int,
model: str, input_field: str, target_field: str) -> Dict:
"""Evaluate a prompt on a dataset using the selected model."""
try:
# Get API key from environment
api_key = os.environ.get("OPENAI_API_KEY")
if not api_key:
return {
"error": "OPENAI_API_KEY not set in environment",
"accuracy": 0,
"correct": 0,
"total": 0,
"results": []
}
# Load dataset
dataset = load_dataset(dataset_name, split=split, streaming=False)
# Sample random examples
if len(dataset) > num_samples:
indices = random.sample(range(len(dataset)), num_samples)
samples = [dataset[i] for i in indices]
else:
samples = list(dataset)[:num_samples]
# Initialize OpenAI client with OpenRouter
client = OpenAI(
base_url="https://openrouter.ai/api/v1",
api_key=api_key,
)
correct = 0
total = 0
results = []
errors = []
for idx, sample in enumerate(samples):
try:
# Get input and target
input_text = sample.get(input_field, "")
if isinstance(input_text, dict):
input_text = str(input_text)
target = sample.get(target_field, "")
if isinstance(target, dict):
target = str(target)
# Format the prompt with the input
formatted_prompt = prompt.replace("{input}", str(input_text))
# Call the model
response = client.chat.completions.create(
model=model,
messages=[
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": formatted_prompt}
],
temperature=0.1,
max_tokens=500,
)
prediction = response.choices[0].message.content.strip()
# Simple exact match evaluation
is_correct = str(target).lower().strip() in prediction.lower()
if is_correct:
correct += 1
total += 1
results.append({
"input": str(input_text)[:100] + "..." if len(str(input_text)) > 100 else str(input_text),
"target": str(target),
"prediction": prediction[:100] + "..." if len(prediction) > 100 else prediction,
"correct": is_correct
})
except Exception as e:
error_msg = f"Sample {idx+1}: {str(e)}"
print(f"Error evaluating sample {idx+1}: {e}")
errors.append(error_msg)
# Only continue if we haven't failed on all samples
if len(errors) > len(samples) // 2: # More than half failed
print(f"Too many errors ({len(errors)} out of {len(samples)}), stopping evaluation")
break
continue
accuracy = (correct / total * 100) if total > 0 else 0
result_dict = {
"accuracy": accuracy,
"correct": correct,
"total": total,
"results": results
}
# Add errors if any occurred
if errors:
result_dict["errors"] = errors
if total == 0:
# All samples failed - create a helpful error message
result_dict["error"] = f"All {len(samples)} samples failed to evaluate. First few errors:\n" + "\n".join(errors[:3])
return result_dict
except Exception as e:
return {
"error": str(e),
"accuracy": 0,
"correct": 0,
"total": 0,
"results": []
}
def parse_evolution_history(output_dir: str) -> str:
"""
Parse evolution history from OpenEvolve output directory.
Returns a markdown string with visualization of the evolution process.
"""
try:
evolution_viz = "## ๐งฌ Evolution Progress\n\n"
# Look for generation files or logs
generation_files = sorted(glob.glob(os.path.join(output_dir, "generation_*.txt")))
log_file = os.path.join(output_dir, "evolution.log")
# Try to parse generation files if they exist
if generation_files:
evolution_viz += "### Generation-by-Generation Progress\n\n"
for gen_file in generation_files:
gen_num = os.path.basename(gen_file).replace("generation_", "").replace(".txt", "")
try:
with open(gen_file, 'r') as f:
content = f.read()
evolution_viz += f"**Generation {gen_num}:**\n```\n{content[:200]}{'...' if len(content) > 200 else ''}\n```\n\n"
except:
pass
# Try to parse log file
elif os.path.exists(log_file):
evolution_viz += "### Evolution Log\n\n"
try:
with open(log_file, 'r') as f:
log_content = f.read()
evolution_viz += f"```\n{log_content[-1000:]}\n```\n\n"
except:
pass
# Look for scores or history file
scores_file = os.path.join(output_dir, "scores.json")
if os.path.exists(scores_file):
try:
with open(scores_file, 'r') as f:
scores = json.load(f)
evolution_viz += "### Score Progression\n\n"
evolution_viz += "| Generation | Best Score | Avg Score | Population |\n"
evolution_viz += "|------------|-----------|-----------|------------|\n"
for gen in scores:
evolution_viz += f"| {gen['generation']} | {gen['best']:.3f} | {gen['avg']:.3f} | {gen['population']} |\n"
evolution_viz += "\n"
except:
pass
# Look for all program variants
program_files = sorted(glob.glob(os.path.join(output_dir, "program_*.txt")))
if program_files:
evolution_viz += f"### Explored Variants\n\n"
evolution_viz += f"OpenEvolve explored {len(program_files)} different prompt variants during evolution.\n\n"
# Show a few intermediate prompts
if len(program_files) > 3:
sample_files = [program_files[0], program_files[len(program_files)//2], program_files[-2]]
evolution_viz += "**Sample Intermediate Prompts:**\n\n"
for idx, pfile in enumerate(sample_files, 1):
try:
with open(pfile, 'r') as f:
prompt_content = f.read()
evolution_viz += f"**Variant {idx}:**\n```\n{prompt_content[:150]}{'...' if len(prompt_content) > 150 else ''}\n```\n\n"
except:
pass
# If no specific files found, show directory contents
if not generation_files and not os.path.exists(log_file) and not os.path.exists(scores_file):
evolution_viz += "### Evolution Complete\n\n"
evolution_viz += "OpenEvolve ran 10 iterations of evolutionary optimization using:\n"
evolution_viz += "- **Population Size**: 10 prompts per generation\n"
evolution_viz += "- **Selection Strategy**: 10% elite, 30% explore, 60% exploit\n"
evolution_viz += "- **Islands**: 1 population with mutation and crossover\n"
evolution_viz += "- **Evaluation**: 100 samples per prompt variant\n\n"
# Count files in output directory
all_files = os.listdir(output_dir)
evolution_viz += f"Generated {len(all_files)} files during evolution process.\n\n"
return evolution_viz
except Exception as e:
return f"## ๐งฌ Evolution Progress\n\nEvolution completed successfully. Unable to parse detailed history: {str(e)}\n\n"
def create_evaluator_file(dataset_name: str, split: str, model: str,
input_field: str, target_field: str, work_dir: str):
"""Create an evaluator.py file for OpenEvolve."""
evaluator_code = f'''
import os
import random
from datasets import load_dataset
from openai import OpenAI
def evaluate(prompt: str) -> float:
"""Evaluate a prompt and return a score between 0 and 1."""
try:
# Load dataset
dataset = load_dataset("{dataset_name}", split="{split}", streaming=False)
# Sample 100 random examples
num_samples = min(100, len(dataset))
if len(dataset) > num_samples:
indices = random.sample(range(len(dataset)), num_samples)
samples = [dataset[i] for i in indices]
else:
samples = list(dataset)[:num_samples]
# Initialize OpenAI client
api_key = os.environ.get("OPENAI_API_KEY")
client = OpenAI(
base_url="https://openrouter.ai/api/v1",
api_key=api_key,
)
correct = 0
total = 0
for sample in samples:
try:
# Get input and target
input_text = sample.get("{input_field}", "")
if isinstance(input_text, dict):
input_text = str(input_text)
target = sample.get("{target_field}", "")
if isinstance(target, dict):
target = str(target)
# Format the prompt
formatted_prompt = prompt.replace("{{input}}", str(input_text))
# Call the model
response = client.chat.completions.create(
model="{model}",
messages=[
{{"role": "system", "content": "You are a helpful assistant."}},
{{"role": "user", "content": formatted_prompt}}
],
temperature=0.1,
max_tokens=500,
)
prediction = response.choices[0].message.content.strip()
# Simple evaluation
is_correct = str(target).lower().strip() in prediction.lower()
if is_correct:
correct += 1
total += 1
except Exception as e:
print(f"Error evaluating sample: {{e}}")
continue
# Return score between 0 and 1
return (correct / total) if total > 0 else 0.0
except Exception as e:
print(f"Error in evaluation: {{e}}")
return 0.0
'''
evaluator_path = os.path.join(work_dir, "evaluator.py")
with open(evaluator_path, "w") as f:
f.write(evaluator_code)
return evaluator_path
def create_config_file(model: str, work_dir: str):
"""Create a config.yaml file for OpenEvolve."""
config = {
"llm": {
"api_base": "https://openrouter.ai/api/v1",
"model": model,
"temperature": 0.7,
"max_tokens": 4096,
},
"evolution": {
"max_iterations": 10,
"population_size": 10,
"num_islands": 1,
"elite_ratio": 0.1,
"explore_ratio": 0.3,
"exploit_ratio": 0.6,
},
"evaluation": {
"timeout": 1800,
}
}
config_path = os.path.join(work_dir, "config.yaml")
with open(config_path, "w") as f:
yaml.dump(config, f)
return config_path
def optimize_prompt(initial_prompt: str, dataset_name: str, dataset_split: str,
model: str, input_field: str, target_field: str,
progress=gr.Progress()) -> Tuple[str, str, str, str]:
"""Run OpenEvolve to optimize the prompt."""
progress(0, desc="Validating inputs...")
# Validate all inputs
is_valid, validation_message = validate_inputs(
dataset_name, dataset_split, input_field, target_field, initial_prompt
)
if not is_valid:
return f"## Validation Failed\n\n{validation_message}", "", "", ""
progress(0.05, desc=f"Validation passed: {validation_message}")
# Create temporary working directory
work_dir = tempfile.mkdtemp(prefix="openevolve_")
try:
# Save initial prompt
initial_prompt_path = os.path.join(work_dir, "initial_prompt.txt")
with open(initial_prompt_path, "w") as f:
f.write(initial_prompt)
# Create evaluator
progress(0.1, desc="Creating evaluator...")
evaluator_path = create_evaluator_file(dataset_name, dataset_split, model,
input_field, target_field, work_dir)
# Create config
progress(0.15, desc="Creating configuration...")
config_path = create_config_file(model, work_dir)
# Run initial evaluation
progress(0.2, desc="Running initial evaluation on 100 samples...")
initial_eval = evaluate_prompt(
initial_prompt, dataset_name, dataset_split, 100,
model, input_field, target_field
)
if "error" in initial_eval:
return f"## Error\n\nโ Initial evaluation failed: {initial_eval['error']}", "", "", ""
if initial_eval["total"] == 0:
return f"## Error\n\nโ Initial evaluation failed: No samples could be evaluated. This usually means:\n- API key is invalid or has no credits\n- Model is unavailable or rate-limited\n- Dataset fields are incorrect\n- Network connectivity issues\n\nPlease check your configuration and try again.", "", "", ""
initial_results = f"""
### Initial Prompt Evaluation
**Prompt:**
```
{initial_prompt}
```
**Results:**
- Accuracy: {initial_eval['accuracy']:.2f}%
- Correct: {initial_eval['correct']}/{initial_eval['total']}
**Sample Results:**
"""
for i, result in enumerate(initial_eval['results'][:5], 1):
initial_results += f"\n{i}. Input: {result['input']}\n"
initial_results += f" Target: {result['target']}\n"
initial_results += f" Prediction: {result['prediction']}\n"
initial_results += f" โ Correct\n" if result['correct'] else f" โ Incorrect\n"
# Run OpenEvolve
progress(0.3, desc="Starting OpenEvolve optimization (10 iterations, ~5-15 minutes)...")
output_dir = os.path.join(work_dir, "output")
os.makedirs(output_dir, exist_ok=True)
try:
# Run evolution
result = run_evolution(
initial_program=initial_prompt_path,
evaluator=evaluator_path,
config=config_path,
output_dir=output_dir
)
progress(0.80, desc="Parsing evolution history...")
# Parse evolution history for visualization
evolution_viz = parse_evolution_history(output_dir)
progress(0.85, desc="Evaluating best evolved prompt...")
# Get the best prompt
best_prompt_path = os.path.join(output_dir, "best_program.txt")
if os.path.exists(best_prompt_path):
with open(best_prompt_path, "r") as f:
best_prompt = f.read()
else:
best_prompt = initial_prompt
# Evaluate best prompt
final_eval = evaluate_prompt(
best_prompt, dataset_name, dataset_split, 100,
model, input_field, target_field
)
final_results = f"""
### Evolved Prompt Evaluation
**Prompt:**
```
{best_prompt}
```
**Results:**
- Accuracy: {final_eval['accuracy']:.2f}%
- Correct: {final_eval['correct']}/{final_eval['total']}
- Improvement: {final_eval['accuracy'] - initial_eval['accuracy']:+.2f}%
**Sample Results:**
"""
for i, result in enumerate(final_eval['results'][:5], 1):
final_results += f"\n{i}. Input: {result['input']}\n"
final_results += f" Target: {result['target']}\n"
final_results += f" Prediction: {result['prediction']}\n"
final_results += f" โ Correct\n" if result['correct'] else f" โ Incorrect\n"
summary = f"""
## ๐ Optimization Complete!
### Summary
- **Dataset**: {dataset_name} ({dataset_split} split)
- **Model**: {model}
- **Samples**: 100 per evaluation
- **Iterations**: 10
### Results
- **Initial Accuracy**: {initial_eval['accuracy']:.2f}%
- **Final Accuracy**: {final_eval['accuracy']:.2f}%
- **Improvement**: {final_eval['accuracy'] - initial_eval['accuracy']:+.2f}%
{validation_message}
"""
progress(1.0, desc="Complete!")
return summary, initial_results, evolution_viz, final_results
except Exception as e:
return f"## Error During Evolution\n\nโ {str(e)}", initial_results, "", ""
finally:
# Clean up
try:
shutil.rmtree(work_dir)
except:
pass
# Create Gradio interface
with gr.Blocks(title="OpenEvolve Prompt Optimizer", theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# ๐งฌ OpenEvolve Prompt Optimizer
Automatically evolve and optimize your prompts using evolutionary algorithms!
This space uses [OpenEvolve](https://github.com/algorithmicsuperintelligence/openevolve) to iteratively improve prompts
by testing them on real datasets and evolving better versions.
## How it works:
1. Enter an initial prompt (use `{input}` as a placeholder for dataset inputs)
2. Enter the full HuggingFace dataset name (e.g., `stanfordnlp/imdb`, `gsm8k`)
3. Specify the dataset split and field names
4. Choose a free model from OpenRouter
5. Click "Optimize Prompt" - the system will validate everything first!
6. Watch the evolution progress in real-time
7. Compare initial vs. evolved performance!
**Note**: API key is read from `OPENAI_API_KEY` environment variable (set in Space secrets)
""")
with gr.Row():
with gr.Column():
gr.Markdown("### Configuration")
model = gr.Dropdown(
choices=FREE_MODELS,
value=FREE_MODELS[0],
label="Select Model",
info="Choose from 30+ free models on OpenRouter (0.5B to 405B parameters)"
)
dataset_name = gr.Textbox(
label="HuggingFace Dataset (Full Name)",
value="stanfordnlp/imdb",
placeholder="e.g., stanfordnlp/imdb, openai/gsm8k, SetFit/sst5",
info="Full dataset name from HuggingFace Hub (org/dataset-name or dataset-name)"
)
dataset_split = gr.Textbox(
label="Dataset Split",
value="test",
placeholder="e.g., train, test, validation"
)
input_field = gr.Textbox(
label="Input Field Name",
value="text",
placeholder="e.g., text, question, context",
info="The field containing inputs to process"
)
target_field = gr.Textbox(
label="Target Field Name",
value="label",
placeholder="e.g., label, answer, target",
info="The field containing expected outputs"
)
initial_prompt = gr.TextArea(
label="Initial Prompt",
value="Analyze the sentiment of the following text and classify it as positive or negative:\n\n{input}\n\nClassification:",
lines=6,
info="Use {input} as placeholder for dataset inputs"
)
# Button outside the column for better visibility
with gr.Row():
with gr.Column():
optimize_btn = gr.Button("๐ Validate & Optimize Prompt", variant="primary", size="lg")
# Results section - clearly separated
gr.Markdown("---")
gr.Markdown("## ๐ Results")
with gr.Row():
with gr.Column():
summary = gr.Markdown("Click 'Validate & Optimize Prompt' to start optimization...", visible=True)
with gr.Row():
with gr.Column():
initial_results = gr.Markdown("### Initial Results\nWill appear here after validation...", visible=True)
with gr.Column():
final_results = gr.Markdown("### Final Results\nWill appear here after optimization...", visible=True)
with gr.Row():
with gr.Column():
evolution_progress = gr.Markdown("### Evolution Progress\nEvolution progress will appear here during optimization...", visible=True)
# Documentation section - in collapsible accordion
gr.Markdown("---")
with gr.Accordion("๐ Documentation & Examples", open=False):
gr.Markdown("""
### Example Datasets & Fields:
| Dataset | Split | Input Field | Target Field | Task |
|---------|-------|-------------|--------------|------|
| stanfordnlp/imdb | test | text | label | Sentiment Analysis |
| rajpurkar/squad | validation | question | answers | Question Answering |
| dair-ai/emotion | test | text | label | Emotion Classification |
| openai/gsm8k | test | question | answer | Math Reasoning |
| fancyzhx/ag_news | test | text | label | News Classification |
### About This Demo Space:
**This is a demonstration space** showcasing OpenEvolve's prompt optimization capabilities.
The interface shows you how the system works, but **you'll need to set up your own instance to run optimizations**.
### How to Run This Yourself:
1. **Clone this Space**: Click "โฎ" (three dots) at top-right โ "Duplicate this Space"
2. **Set Environment Variables** in your cloned Space's settings:
- `OPENAI_API_KEY`: Your OpenRouter API key (get free key at [openrouter.ai/keys](https://openrouter.ai/keys))
- `HF_TOKEN`: (Optional) HuggingFace token for private datasets
3. **Configure Your Optimization**:
- Dataset: Use full name format (e.g., `stanfordnlp/imdb` or `openai/gsm8k`)
- Fields: Specify exact field names from the dataset schema
- Model: Choose from 30+ free models (larger models = better results but slower/rate-limited)
4. **Run & Monitor**:
- All inputs are validated before starting
- Evolution takes 5-15 minutes (10 iterations, 100 samples per evaluation)
- Watch evolution progress visualization in real-time
### About OpenEvolve:
OpenEvolve is an open-source evolutionary optimization framework. Learn more at:
- [GitHub Repository](https://github.com/algorithmicsuperintelligence/openevolve)
- [Documentation](https://github.com/algorithmicsuperintelligence/openevolve#readme)
""")
optimize_btn.click(
fn=optimize_prompt,
inputs=[initial_prompt, dataset_name, dataset_split, model,
input_field, target_field],
outputs=[summary, initial_results, evolution_progress, final_results]
)
if __name__ == "__main__":
demo.launch()
|