codelion's picture
Upload app.py
12e9ab7 verified
raw
history blame
55.6 kB
import gradio as gr
import os
import yaml
import json
import random
import re
from datasets import load_dataset, get_dataset_config_names, get_dataset_split_names
from openai import OpenAI
from openevolve import run_evolution
from typing import Dict, List, Tuple, Optional
import tempfile
import shutil
import requests
import glob
# Free models from OpenRouter - Curated selection (verified as of 2025)
# IMPORTANT: The :free suffix is REQUIRED to use the free tier. Without it, requests are charged!
FREE_MODELS = [
"qwen/qwen-2.5-72b-instruct:free", # 72B - Strong in coding/math/multilingual (default - better rate limits)
"meta-llama/llama-3.3-70b-instruct:free", # 70B - Advanced reasoning
"google/gemma-3-27b-it:free", # 27B - Strong instruction-tuned
"mistralai/mistral-small-3.1-24b-instruct:free", # 24B - Efficient and capable
"deepseek/deepseek-r1:free", # 671B (37B active) - Top-tier but heavily rate-limited
"meta-llama/llama-3.2-3b-instruct", # 3B - PAID but very cheap fallback when free models hit rate limits
]
def validate_dataset(dataset_name: str, split: str, input_field: str, target_field: str) -> Tuple[bool, str]:
"""
Validate that the dataset exists and has the required fields.
Returns:
Tuple of (is_valid, error_message)
"""
try:
# Check if dataset name has correct format (should be org/name or just name)
if not dataset_name or dataset_name.strip() == "":
return False, "❌ Dataset name cannot be empty"
dataset_name = dataset_name.strip()
# Try to get dataset info from HuggingFace API
hf_token = os.environ.get("HF_TOKEN", None)
headers = {}
if hf_token:
headers["Authorization"] = f"Bearer {hf_token}"
# Check if dataset exists on HuggingFace Hub
api_url = f"https://huggingface.co/api/datasets/{dataset_name}"
response = requests.get(api_url, headers=headers, timeout=10)
if response.status_code == 404:
return False, f"❌ Dataset '{dataset_name}' not found on HuggingFace Hub. Please use the full dataset name (e.g., 'stanfordnlp/imdb' or 'gsm8k')"
elif response.status_code != 200:
# Try to load anyway - might be a private dataset or API issue
print(f"Warning: Could not verify dataset via API (status {response.status_code}), attempting to load...")
# Try to load a small sample to verify it works and check fields
print(f"Loading dataset {dataset_name} with split {split}...")
# First, check if the split exists
try:
available_splits = get_dataset_split_names(dataset_name)
if split not in available_splits:
return False, f"❌ Split '{split}' not found. Available splits: {', '.join(available_splits)}"
except Exception as e:
print(f"Could not get split names: {e}. Will try to load anyway...")
# Load a small sample to check fields
# Try loading with just dataset name first
try:
dataset = load_dataset(dataset_name, split=split, streaming=True)
except ValueError as e:
# If it fails with config error, try common configs
if "config" in str(e).lower() or "Config name is missing" in str(e):
# Try common configs based on dataset name
default_config = "main"
if dataset_name.lower() == "glue":
default_config = "sst2"
print(f"Dataset requires config, trying with '{default_config}' config...")
try:
dataset = load_dataset(dataset_name, default_config, split=split, streaming=True)
except:
# If default config doesn't work, raise the original error
raise e
else:
raise
# Get first example to check fields
first_example = next(iter(dataset))
available_fields = list(first_example.keys())
# Check if input field exists
if input_field not in available_fields:
return False, f"❌ Input field '{input_field}' not found. Available fields: {', '.join(available_fields)}"
# Check if target field exists
if target_field not in available_fields:
return False, f"❌ Target field '{target_field}' not found. Available fields: {', '.join(available_fields)}"
# All validations passed
return True, f"✅ Dataset validated successfully! Fields '{input_field}' and '{target_field}' found."
except Exception as e:
error_msg = str(e)
if "404" in error_msg or "not found" in error_msg.lower():
return False, f"❌ Dataset '{dataset_name}' not found. Please check the dataset name (use format: org/dataset-name)"
return False, f"❌ Error validating dataset: {error_msg}"
def validate_inputs(dataset_name: str, split: str, input_field: str, target_field: str,
initial_prompt: str) -> Tuple[bool, str]:
"""
Validate all inputs before starting optimization.
Returns:
Tuple of (is_valid, message)
"""
# Check API key
api_key = os.environ.get("OPENAI_API_KEY")
if not api_key:
return False, "❌ OPENAI_API_KEY environment variable not set. Please set it in the Space secrets."
# Check prompt contains {input} placeholder
if "{input}" not in initial_prompt:
return False, "❌ Prompt must contain '{input}' placeholder for dataset inputs"
# Check dataset name format
dataset_name = dataset_name.strip()
if not dataset_name:
return False, "❌ Dataset name cannot be empty"
# Validate dataset and fields
is_valid, message = validate_dataset(dataset_name, split, input_field, target_field)
if not is_valid:
return False, message
return True, message
def evaluate_prompt(prompt: str, dataset_name: str, split: str, num_samples: int,
model: str, input_field: str, target_field: str,
fixed_indices: List[int] = None) -> Dict:
"""
Evaluate a prompt on a dataset using the selected model.
Args:
fixed_indices: Optional list of dataset indices to use. If provided,
ensures we evaluate on the SAME samples every time.
"""
try:
# Get API key from environment
api_key = os.environ.get("OPENAI_API_KEY")
if not api_key:
return {
"error": "OPENAI_API_KEY not set in environment",
"accuracy": 0,
"correct": 0,
"total": 0,
"results": []
}
# Load dataset
# Try loading with just dataset name first
try:
dataset = load_dataset(dataset_name, split=split, streaming=False)
except ValueError as e:
# If it fails with config error, try common configs
if "config" in str(e).lower() or "Config name is missing" in str(e):
# Try common configs based on dataset name
default_config = "main"
if dataset_name.lower() == "glue":
default_config = "sst2"
dataset = load_dataset(dataset_name, default_config, split=split, streaming=False)
else:
raise
# Sample examples - use fixed indices if provided to ensure consistency
if fixed_indices is not None:
# Use the provided indices (ensures same samples for initial/final eval)
indices = fixed_indices
samples = [dataset[i] for i in indices]
elif len(dataset) > num_samples:
# First time: use fixed seed for reproducible sampling
random.seed(42) # Fixed seed ensures same samples across runs
indices = random.sample(range(len(dataset)), num_samples)
samples = [dataset[i] for i in indices]
else:
indices = list(range(min(num_samples, len(dataset))))
samples = list(dataset)[:num_samples]
# Initialize OpenAI client with OpenRouter
client = OpenAI(
base_url="https://openrouter.ai/api/v1",
api_key=api_key,
)
correct = 0
total = 0
results = []
errors = []
for idx, sample in enumerate(samples):
try:
# Get input and target
input_text = sample.get(input_field, "")
if isinstance(input_text, dict):
input_text = str(input_text)
target = sample.get(target_field, "")
if isinstance(target, dict):
target = str(target)
# Format the prompt with the input
formatted_prompt = prompt.replace("{input}", str(input_text))
# Call the model
response = client.chat.completions.create(
model=model,
messages=[
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": formatted_prompt}
],
temperature=0.0,
max_tokens=500,
)
prediction = response.choices[0].message.content.strip()
# Smart evaluation - handle both math and text answers
target_str = str(target).strip()
pred_str = prediction.strip()
def extract_answer(text):
"""Extract answer from text - handles GSM8K format and general text"""
# GSM8K format: "#### NUMBER" at the end
if "####" in text:
parts = text.split("####")
if len(parts) > 1:
answer_part = parts[-1].strip()
# Remove comma separators (1,000 -> 1000)
answer_part = answer_part.replace(',', '')
return answer_part
# Try to extract last number from free-form text
numbers = re.findall(r'-?\d+(?:,\d{3})*(?:\.\d+)?', text)
if numbers:
# Return the last number found (usually the final answer)
return numbers[-1].replace(',', '')
return text
def is_mathematically_equal(str1, str2):
"""Check if two strings represent the same mathematical value"""
try:
# Try to convert both to floats and compare
num1 = float(str1.replace(',', ''))
num2 = float(str2.replace(',', ''))
# Use small epsilon for float comparison
return abs(num1 - num2) < 1e-6
except (ValueError, AttributeError):
# If conversion fails, do string comparison
return str1.lower().strip() == str2.lower().strip()
# Extract answers
target_answer = extract_answer(target_str)
pred_answer = extract_answer(pred_str)
# Check if answers match mathematically or textually
is_correct = is_mathematically_equal(target_answer, pred_answer)
# Fallback: check for semantic equivalents for sentiment analysis
if not is_correct:
target_lower = target_answer.lower()
pred_lower = pred_answer.lower()
# Sentiment mappings with expanded synonyms
positive_words = ["positive", "good", "great", "excellent", "wonderful", "fantastic",
"amazing", "love", "best", "1", "pos", "admiration", "appreciation",
"praise", "favorable", "approve"]
negative_words = ["negative", "bad", "poor", "terrible", "awful", "worst", "hate",
"0", "neg", "criticism", "disdain", "disapproval", "unfavorable",
"critique", "condemn", "sarcasm"]
if target_lower in ["1", "positive", "pos"]:
is_correct = any(word in pred_lower for word in positive_words)
elif target_lower in ["0", "negative", "neg"]:
is_correct = any(word in pred_lower for word in negative_words)
if is_correct:
correct += 1
total += 1
results.append({
"input": str(input_text)[:100] + "..." if len(str(input_text)) > 100 else str(input_text),
"target": str(target),
"prediction": prediction[:100] + "..." if len(prediction) > 100 else prediction,
"correct": is_correct
})
except Exception as e:
error_msg = f"Sample {idx+1}: {str(e)}"
print(f"Error evaluating sample {idx+1}: {e}")
errors.append(error_msg)
# Only continue if we haven't failed on all samples
if len(errors) > len(samples) // 2: # More than half failed
print(f"Too many errors ({len(errors)} out of {len(samples)}), stopping evaluation")
break
continue
accuracy = (correct / total * 100) if total > 0 else 0
result_dict = {
"accuracy": accuracy,
"correct": correct,
"total": total,
"results": results,
"indices": indices # Return indices so we can reuse them for final eval
}
# Add errors if any occurred
if errors:
result_dict["errors"] = errors
if total == 0:
# All samples failed - create a helpful error message
result_dict["error"] = f"All {len(samples)} samples failed to evaluate. First few errors:\n" + "\n".join(errors[:3])
return result_dict
except Exception as e:
return {
"error": str(e),
"accuracy": 0,
"correct": 0,
"total": 0,
"results": []
}
def collect_prompt_history(output_dir: str, initial_score: float = 0.0) -> List[Dict]:
"""
Collect only the prompts that were "best" at some point during evolution.
Returns only programs that improved upon the initial score (deduplicated).
Args:
output_dir: Directory containing checkpoint data
initial_score: Score of the initial prompt (baseline to beat)
Returns a list of dicts with: {prompt, score, iteration, id}
"""
try:
all_programs = []
seen_prompts = set() # Track unique prompts
# OpenEvolve saves programs in checkpoint directories as JSON files
# Structure: output_dir/checkpoints/checkpoint_{iteration}/programs/{program_id}.json
checkpoints_dir = os.path.join(output_dir, "checkpoints")
if not os.path.exists(checkpoints_dir):
return []
# Find all checkpoint directories
checkpoint_dirs = sorted(glob.glob(os.path.join(checkpoints_dir, "checkpoint_*")))
# Collect all programs from all checkpoints
for checkpoint_dir in checkpoint_dirs:
programs_dir = os.path.join(checkpoint_dir, "programs")
if not os.path.exists(programs_dir):
continue
# Read all program JSON files
program_files = glob.glob(os.path.join(programs_dir, "*.json"))
for pfile in program_files:
try:
with open(pfile, 'r') as f:
program_data = json.load(f)
# Extract the code (prompt) from the program data
prompt_content = program_data.get("code", "").strip()
prog_id = program_data.get("id", os.path.basename(pfile).replace(".json", ""))
iteration = program_data.get("iteration_found", 0)
metrics = program_data.get("metrics", {})
# Get combined score for comparison
combined_score = metrics.get("combined_score", 0.0)
all_programs.append({
"prompt": prompt_content,
"id": prog_id,
"file": pfile,
"iteration": iteration,
"metrics": metrics,
"score": combined_score
})
except Exception as e:
print(f"Error reading program file {pfile}: {e}")
continue
# Sort all programs by iteration (chronological order)
all_programs.sort(key=lambda x: x.get("iteration", 0))
# Filter to keep only programs that improved the best score
# Start from the initial score as the baseline
best_programs = []
current_best_score = initial_score
for program in all_programs:
prompt_content = program["prompt"]
score = program["score"]
iteration = program["iteration"]
# Skip iteration 0 (that's the initial prompt, already added separately)
if iteration == 0:
continue
# Create a normalized version for duplicate detection (ignore whitespace differences)
normalized_prompt = " ".join(prompt_content.split())
# Skip duplicates
if normalized_prompt in seen_prompts:
continue
# Only keep if this program improved the best score
if score > current_best_score:
seen_prompts.add(normalized_prompt)
best_programs.append(program)
improvement = score - current_best_score
print(f" ✓ Best program at iteration {iteration}: score={score:.2%} (improved by +{improvement:.2%})")
current_best_score = score
return best_programs
except Exception as e:
print(f"Error collecting prompt history: {e}")
return []
def parse_evolution_history(output_dir: str) -> str:
"""
Parse evolution history from OpenEvolve output directory.
Returns a markdown string with visualization of the evolution process.
"""
try:
evolution_viz = "## 🧬 Evolution Progress\n\n"
# Look for generation files or logs
generation_files = sorted(glob.glob(os.path.join(output_dir, "generation_*.txt")))
log_file = os.path.join(output_dir, "evolution.log")
# Try to parse generation files if they exist
if generation_files:
evolution_viz += "### Generation-by-Generation Progress\n\n"
for gen_file in generation_files:
gen_num = os.path.basename(gen_file).replace("generation_", "").replace(".txt", "")
try:
with open(gen_file, 'r') as f:
content = f.read()
evolution_viz += f"**Generation {gen_num}:**\n```\n{content[:200]}{'...' if len(content) > 200 else ''}\n```\n\n"
except:
pass
# Try to parse log file
elif os.path.exists(log_file):
evolution_viz += "### Evolution Log\n\n"
try:
with open(log_file, 'r') as f:
log_content = f.read()
evolution_viz += f"```\n{log_content[-1000:]}\n```\n\n"
except:
pass
# Look for scores or history file
scores_file = os.path.join(output_dir, "scores.json")
if os.path.exists(scores_file):
try:
with open(scores_file, 'r') as f:
scores = json.load(f)
evolution_viz += "### Score Progression\n\n"
evolution_viz += "| Generation | Best Score | Avg Score | Population |\n"
evolution_viz += "|------------|-----------|-----------|------------|\n"
for gen in scores:
evolution_viz += f"| {gen['generation']} | {gen['best']:.3f} | {gen['avg']:.3f} | {gen['population']} |\n"
evolution_viz += "\n"
except:
pass
# Look for all program variants
program_files = sorted(glob.glob(os.path.join(output_dir, "program_*.txt")))
if program_files:
evolution_viz += f"### Explored Variants\n\n"
evolution_viz += f"OpenEvolve explored {len(program_files)} different prompt variants during evolution.\n\n"
# Show a few intermediate prompts
if len(program_files) > 3:
sample_files = [program_files[0], program_files[len(program_files)//2], program_files[-2]]
evolution_viz += "**Sample Intermediate Prompts:**\n\n"
for idx, pfile in enumerate(sample_files, 1):
try:
with open(pfile, 'r') as f:
prompt_content = f.read()
evolution_viz += f"**Variant {idx}:**\n```\n{prompt_content[:150]}{'...' if len(prompt_content) > 150 else ''}\n```\n\n"
except:
pass
# If no specific files found, show directory contents
if not generation_files and not os.path.exists(log_file) and not os.path.exists(scores_file):
evolution_viz += "### Evolution Complete\n\n"
evolution_viz += "OpenEvolve ran 10 iterations of evolutionary optimization using:\n"
evolution_viz += "- **Population Size**: 10 prompts per generation\n"
evolution_viz += "- **Selection Strategy**: 10% elite, 30% explore, 60% exploit\n"
evolution_viz += "- **Islands**: 1 population with mutation and crossover\n"
evolution_viz += "- **Evaluation**: 100 samples per prompt variant\n\n"
# Count files in output directory
all_files = os.listdir(output_dir)
evolution_viz += f"Generated {len(all_files)} files during evolution process.\n\n"
return evolution_viz
except Exception as e:
return f"## 🧬 Evolution Progress\n\nEvolution completed successfully. Unable to parse detailed history: {str(e)}\n\n"
def create_evaluator_file(dataset_name: str, split: str, model: str,
input_field: str, target_field: str, work_dir: str):
"""Create an evaluator.py file for OpenEvolve with staged/cascading evaluation."""
evaluator_code = f'''
import os
import random
from datasets import load_dataset
from openai import OpenAI
def evaluate(prompt: str) -> dict:
"""
Evaluate a prompt using 2-stage cascading evaluation to save API calls.
Stage 1: Evaluate with 50 samples
- If accuracy >= 0.5, proceed to Stage 2
- If accuracy < 0.5, return early (no point wasting 200 more samples)
Stage 2: Evaluate with 200 more samples (total 250)
- Combine results for final score
Returns dict with combined_score (0-1), accuracy, correct, and total.
"""
try:
# IMPORTANT: Use fixed seed for consistent sampling across all evaluations
random.seed(42)
# Load dataset
# Try loading with just dataset name first
try:
dataset = load_dataset("{dataset_name}", split="{split}", streaming=False)
except ValueError as e:
# If it fails with config error, try common configs
if "config" in str(e).lower() or "Config name is missing" in str(e):
# Try common configs based on dataset name
default_config = "main"
if "{dataset_name}".lower() == "glue":
default_config = "sst2"
dataset = load_dataset("{dataset_name}", default_config, split="{split}", streaming=False)
else:
raise
# Initialize OpenAI client
api_key = os.environ.get("OPENAI_API_KEY")
client = OpenAI(
base_url="https://openrouter.ai/api/v1",
api_key=api_key,
)
def evaluate_samples(samples, correct_so_far=0, total_so_far=0):
"""Helper function to evaluate a batch of samples."""
correct = correct_so_far
total = total_so_far
for sample in samples:
try:
# Get input and target
input_text = sample.get("{input_field}", "")
if isinstance(input_text, dict):
input_text = str(input_text)
target = sample.get("{target_field}", "")
if isinstance(target, dict):
target = str(target)
# Format the prompt
formatted_prompt = prompt.replace("{{input}}", str(input_text))
# Call the model
response = client.chat.completions.create(
model="{model}",
messages=[
{{"role": "system", "content": "You are a helpful assistant."}},
{{"role": "user", "content": formatted_prompt}}
],
temperature=0.0,
max_tokens=500,
)
prediction = response.choices[0].message.content.strip()
# Smart evaluation - handle both math and text answers
target_str = str(target).strip()
pred_str = prediction.strip()
def extract_answer(text):
"""Extract answer from text - handles GSM8K format and general text"""
import re
# GSM8K format: "#### NUMBER" at the end
if "####" in text:
parts = text.split("####")
if len(parts) > 1:
answer_part = parts[-1].strip()
# Remove comma separators (1,000 -> 1000)
answer_part = answer_part.replace(',', '')
return answer_part
# Try to extract last number from free-form text
numbers = re.findall(r'-?\\d+(?:,\\d{{3}})*(?:\\.\\d+)?', text)
if numbers:
# Return the last number found (usually the final answer)
return numbers[-1].replace(',', '')
return text
def is_mathematically_equal(str1, str2):
"""Check if two strings represent the same mathematical value"""
try:
# Try to convert both to floats and compare
num1 = float(str1.replace(',', ''))
num2 = float(str2.replace(',', ''))
# Use small epsilon for float comparison
return abs(num1 - num2) < 1e-6
except (ValueError, AttributeError):
# If conversion fails, do string comparison
return str1.lower().strip() == str2.lower().strip()
# Extract answers
target_answer = extract_answer(target_str)
pred_answer = extract_answer(pred_str)
# Check if answers match mathematically or textually
is_correct = is_mathematically_equal(target_answer, pred_answer)
# Fallback: check for semantic equivalents for sentiment analysis
if not is_correct:
target_lower = target_answer.lower()
pred_lower = pred_answer.lower()
# Sentiment mappings with expanded synonyms
positive_words = ["positive", "good", "great", "excellent", "wonderful", "fantastic",
"amazing", "love", "best", "1", "pos", "admiration", "appreciation",
"praise", "favorable", "approve"]
negative_words = ["negative", "bad", "poor", "terrible", "awful", "worst", "hate",
"0", "neg", "criticism", "disdain", "disapproval", "unfavorable",
"critique", "condemn", "sarcasm"]
if target_lower in ["1", "positive", "pos"]:
is_correct = any(word in pred_lower for word in positive_words)
elif target_lower in ["0", "negative", "neg"]:
is_correct = any(word in pred_lower for word in negative_words)
if is_correct:
correct += 1
total += 1
except Exception as e:
print(f"Error evaluating sample: {{e}}")
continue
return correct, total
# STAGE 1: Evaluate with 50 samples first
stage1_size = 50
stage1_samples_count = min(stage1_size, len(dataset))
if len(dataset) > stage1_samples_count:
stage1_indices = random.sample(range(len(dataset)), stage1_samples_count)
stage1_samples = [dataset[i] for i in stage1_indices]
else:
stage1_samples = list(dataset)[:stage1_samples_count]
print(f"[Stage 1/2] Evaluating with {{len(stage1_samples)}} samples...")
correct, total = evaluate_samples(stage1_samples)
stage1_score = (correct / total) if total > 0 else 0.0
print(f"[Stage 1/2] Score: {{stage1_score:.3f}} ({{correct}}/{{total}})")
# Early exit if Stage 1 score is below threshold
if stage1_score < 0.5:
print(f"[Stage 1/2] Score below 0.5 threshold - skipping Stage 2 (saved 200 API calls)")
return {{
"combined_score": stage1_score,
"accuracy": stage1_score,
"correct": correct,
"total": total,
"stage": "stage1_early_exit"
}}
# STAGE 2: Continue with 200 more samples
print(f"[Stage 2/2] Score >= 0.5 - proceeding with 200 more samples...")
stage2_size = 200
stage2_samples_count = min(stage2_size, max(0, len(dataset) - stage1_samples_count))
if stage2_samples_count > 0:
# Get different samples from Stage 1
remaining_indices = list(set(range(len(dataset))) - set(stage1_indices if 'stage1_indices' in locals() else []))
if len(remaining_indices) >= stage2_samples_count:
stage2_indices = random.sample(remaining_indices, stage2_samples_count)
stage2_samples = [dataset[i] for i in stage2_indices]
else:
stage2_samples = [dataset[i] for i in remaining_indices[:stage2_samples_count]]
correct, total = evaluate_samples(stage2_samples, correct, total)
final_score = (correct / total) if total > 0 else stage1_score
print(f"[Stage 2/2] Final score: {{final_score:.3f}} ({{correct}}/{{total}})")
return {{
"combined_score": final_score,
"accuracy": final_score,
"correct": correct,
"total": total,
"stage": "stage2_complete"
}}
else:
print(f"[Stage 2/2] Not enough samples in dataset for Stage 2")
return {{
"combined_score": stage1_score,
"accuracy": stage1_score,
"correct": correct,
"total": total,
"stage": "stage1_complete"
}}
except Exception as e:
print(f"Error in evaluation: {{e}}")
return {{
"combined_score": 0.0,
"accuracy": 0.0,
"correct": 0,
"total": 0,
"error": str(e)
}}
'''
evaluator_path = os.path.join(work_dir, "evaluator.py")
with open(evaluator_path, "w") as f:
f.write(evaluator_code)
return evaluator_path
def create_config_file(model: str, work_dir: str):
"""Create a config.yaml file for OpenEvolve."""
# Create custom templates directory for prompt optimization
templates_dir = os.path.join(work_dir, "templates")
os.makedirs(templates_dir, exist_ok=True)
# Create custom system template for PROMPT optimization (not code)
system_template = """You are an expert prompt engineer tasked with iteratively improving prompts for language models.
Your job is to analyze the current prompt and suggest improvements based on performance feedback.
Focus on making the prompt clearer, more specific, and more effective at achieving its goal.
Consider:
- Clarity and specificity of instructions
- Examples and demonstrations that guide the model
- Formatting that makes the prompt easier to follow
- Edge cases and error handling in the instructions
"""
with open(os.path.join(templates_dir, "system_message.txt"), "w") as f:
f.write(system_template)
# Create custom user template for prompt rewriting
user_template = """# Current Prompt Performance
- Current metrics: {metrics}
- Areas for improvement: {improvement_areas}
{artifacts}
# Prompt Evolution History
{evolution_history}
# Current Prompt
```text
{current_program}
```
# Task
Rewrite the prompt above to improve its performance on the specified metrics.
Provide a complete new version of the prompt that:
1. Maintains the same input/output format (keep placeholders like {{input}}, {{text}}, etc.)
2. Improves clarity and effectiveness
3. Adds helpful examples or instructions if beneficial
4. Is more likely to get correct results
Output ONLY the new prompt text between ```text markers:
```text
Your improved prompt here
```
"""
with open(os.path.join(templates_dir, "full_rewrite_user.txt"), "w") as f:
f.write(user_template)
config = {
"llm": {
"primary_model": model,
"api_base": "https://openrouter.ai/api/v1", # Use OpenRouter endpoint
"temperature": 0.7,
},
"max_iterations": 10,
"checkpoint_interval": 2, # Save checkpoints every 2 iterations to preserve prompt history
"diff_based_evolution": False, # Use full rewrite mode for prompts (not diff/patch mode)
"language": "text", # CRITICAL: Optimize text/prompts, not Python code!
"max_code_length": 40000, # Allow long prompts (default 10000 is too short)
"num_islands": 1, # IMPORTANT: Use only 1 island (not 5) for simpler evolution
"prompt": {
"template_dir": templates_dir, # Use our custom prompt engineering templates
},
"evolution": {
"population_size": 10,
"num_islands": 1, # Single island for simpler evolution
"elite_ratio": 0.1,
"explore_ratio": 0.3,
"exploit_ratio": 0.6,
},
"database": {
"log_prompts": True, # Save prompts used to generate each program
"num_islands": 1, # CRITICAL: This is where island count is actually read from!
},
"evaluator": {
"timeout": 3600, # 1 hour timeout (effectively disabled, but prevents NoneType arithmetic errors)
"cascade_evaluation": False, # Disable cascade to prevent signal errors
"parallel_evaluations": 1, # Single worker to avoid multiprocessing complexity
"distributed": False, # No distributed processing
}
}
config_path = os.path.join(work_dir, "config.yaml")
with open(config_path, "w") as f:
yaml.dump(config, f)
return config_path
def optimize_prompt(initial_prompt: str, dataset_name: str, dataset_split: str,
model: str, input_field: str, target_field: str,
progress=gr.Progress()) -> Tuple[str, str, str, str, List[str], int, int]:
"""Run OpenEvolve to optimize the prompt."""
progress(0, desc="Validating inputs...")
# Validate all inputs
is_valid, validation_message = validate_inputs(
dataset_name, dataset_split, input_field, target_field, initial_prompt
)
if not is_valid:
return f"## Validation Failed\n\n{validation_message}", "", "", "", [], 0, 0
progress(0.05, desc=f"Validation passed: {validation_message}")
# Create temporary working directory
work_dir = tempfile.mkdtemp(prefix="openevolve_")
try:
# Save initial prompt
initial_prompt_path = os.path.join(work_dir, "initial_prompt.txt")
with open(initial_prompt_path, "w") as f:
f.write(initial_prompt)
# Create evaluator
progress(0.1, desc="Creating evaluator...")
evaluator_path = create_evaluator_file(dataset_name, dataset_split, model,
input_field, target_field, work_dir)
# Create config
progress(0.15, desc="Creating configuration...")
config_path = create_config_file(model, work_dir)
# Run initial evaluation (using 20 samples to save API calls)
# IMPORTANT: We save the indices to ensure final eval uses THE SAME samples
progress(0.2, desc="Running initial evaluation on 20 samples...")
initial_eval = evaluate_prompt(
initial_prompt, dataset_name, dataset_split, 20,
model, input_field, target_field
)
if "error" in initial_eval:
return f"## Error\n\n❌ Initial evaluation failed: {initial_eval['error']}", "", "", "", [initial_prompt], 0, 1
if initial_eval["total"] == 0:
return f"## Error\n\n❌ Initial evaluation failed: No samples could be evaluated. This usually means:\n- API key is invalid or has no credits\n- Model is unavailable or rate-limited\n- Dataset fields are incorrect\n- Network connectivity issues\n\nPlease check your configuration and try again.", "", "", "", [initial_prompt], 0, 1
# Save the indices for final evaluation (ensures fair comparison)
eval_indices = initial_eval.get("indices", [])
initial_results = f"""
### Initial Prompt Evaluation
**Prompt:**
```
{initial_prompt}
```
**Results:**
- Accuracy: {initial_eval['accuracy']:.2f}%
- Correct: {initial_eval['correct']}/{initial_eval['total']}
**Sample Results:**
"""
for i, result in enumerate(initial_eval['results'][:5], 1):
initial_results += f"\n{i}. Input: {result['input']}\n"
initial_results += f" Target: {result['target']}\n"
initial_results += f" Prediction: {result['prediction']}\n"
initial_results += f" ✓ Correct\n" if result['correct'] else f" ✗ Incorrect\n"
# Run OpenEvolve
progress(0.3, desc="Starting OpenEvolve optimization (10 iterations with staged evaluation)...")
output_dir = os.path.join(work_dir, "output")
os.makedirs(output_dir, exist_ok=True)
try:
# Comprehensive fix for "signal only works in main thread" in Gradio
# We need to prevent OpenEvolve from using signal handlers entirely
# Step 1: Set environment variable to disable process pool
import os as os_env
os_env.environ['OPENEVOLVE_NO_PARALLEL'] = '1'
# Step 2: Monkey-patch signal module to ignore signal calls in threads
import signal
import threading
original_signal = signal.signal
def safe_signal(signum, handler):
"""Only set signal handlers in main thread"""
if threading.current_thread() is threading.main_thread():
return original_signal(signum, handler)
else:
# Return a dummy handler in non-main threads
return signal.SIG_DFL
signal.signal = safe_signal
# Run evolution with signal patch in place
result = run_evolution(
initial_program=initial_prompt_path,
evaluator=evaluator_path,
config=config_path,
output_dir=output_dir
)
# Restore signal handler
signal.signal = original_signal
progress(0.80, desc="Parsing evolution history...")
# Parse evolution history for visualization
evolution_viz = parse_evolution_history(output_dir)
progress(0.85, desc="Evaluating best evolved prompt on 20 samples...")
# Get the best prompt (OpenEvolve saves to output_dir/best/best_program.txt)
best_prompt_path = os.path.join(output_dir, "best", "best_program.txt")
if os.path.exists(best_prompt_path):
with open(best_prompt_path, "r") as f:
best_prompt = f.read()
else:
# Fallback: try without the "best" subdirectory
best_prompt_path_alt = os.path.join(output_dir, "best_program.txt")
if os.path.exists(best_prompt_path_alt):
with open(best_prompt_path_alt, "r") as f:
best_prompt = f.read()
else:
best_prompt = initial_prompt
# Evaluate best prompt on THE SAME samples as initial eval (fair comparison)
final_eval = evaluate_prompt(
best_prompt, dataset_name, dataset_split, 20,
model, input_field, target_field,
fixed_indices=eval_indices # Use same samples as initial eval!
)
final_results = f"""
### Evolved Prompt Evaluation
**Prompt:**
```
{best_prompt}
```
**Results:**
- Accuracy: {final_eval['accuracy']:.2f}%
- Correct: {final_eval['correct']}/{final_eval['total']}
- Improvement: {final_eval['accuracy'] - initial_eval['accuracy']:+.2f}%
**Sample Results:**
"""
for i, result in enumerate(final_eval['results'][:5], 1):
final_results += f"\n{i}. Input: {result['input']}\n"
final_results += f" Target: {result['target']}\n"
final_results += f" Prediction: {result['prediction']}\n"
final_results += f" ✓ Correct\n" if result['correct'] else f" ✗ Incorrect\n"
summary = f"""
## 🎉 Optimization Complete!
### Summary
- **Dataset**: {dataset_name} ({dataset_split} split)
- **Model**: {model}
- **Initial/Final Eval**: 20 samples each
- **Evolution Eval**: Staged (20 → 100 if score ≥ 0.5)
- **Iterations**: 10
### Results
- **Initial Accuracy**: {initial_eval['accuracy']:.2f}%
- **Final Accuracy**: {final_eval['accuracy']:.2f}%
- **Improvement**: {final_eval['accuracy'] - initial_eval['accuracy']:+.2f}%
{validation_message}
"""
progress(1.0, desc="Complete!")
# Collect only the "best" prompts - ones that improved the score during evolution
all_prompts = []
# Add initial prompt
initial_score = initial_eval['accuracy'] / 100.0 # Convert to 0-1 scale
all_prompts.append({
"prompt": initial_prompt,
"score": initial_score,
"label": "Initial Prompt",
"iteration": 0
})
# Add evolved prompts (only programs that were "best" at some point)
# Pass initial_score so we only show programs that BEAT the initial prompt
prompt_history = collect_prompt_history(output_dir, initial_score=initial_score)
for i, p in enumerate(prompt_history):
# Skip if it's the same as initial (shouldn't happen, but just in case)
if i == 0 and p.get("iteration", -1) == 0:
continue
all_prompts.append({
"prompt": p["prompt"],
"score": p.get("score", 0.0),
"label": f"Best at Iteration {p.get('iteration', i+1)}",
"iteration": p.get("iteration", i+1)
})
return summary, initial_results, evolution_viz, final_results, all_prompts, 0, len(all_prompts)
except Exception as e:
# Return error with initial prompt in dict format
error_prompts = [{"prompt": initial_prompt, "score": 0.0, "label": "Initial Prompt"}]
return f"## Error During Evolution\n\n❌ {str(e)}", initial_results, "", "", error_prompts, 0, 1
finally:
# Don't clean up - keep prompts for browsing
# User can manually clean /tmp if needed
pass
# Create Gradio interface
with gr.Blocks(title="OpenEvolve Prompt Optimizer", theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# 🧬 OpenEvolve Prompt Optimizer
Automatically evolve and optimize your prompts using evolutionary algorithms!
This space uses [OpenEvolve](https://github.com/algorithmicsuperintelligence/openevolve) to iteratively improve prompts
by testing them on real datasets and evolving better versions.
## How it works:
1. Enter an initial prompt (use `{input}` as a placeholder for dataset inputs)
2. Default dataset is **GSM8K** (grade school math) - great for showing prompt improvement!
3. Specify the dataset split and field names (or use other datasets like `glue`, `stanfordnlp/imdb`)
4. Choose a free model from OpenRouter
5. Click "Optimize Prompt" - the system will validate everything first!
6. Watch the evolution progress in real-time
7. Compare initial vs. evolved performance - uses 50 samples for stage 1, 200 for stage 2!
**Note**: API key is read from `OPENAI_API_KEY` environment variable (set in Space secrets)
""")
with gr.Row():
with gr.Column():
gr.Markdown("### Configuration")
model = gr.Dropdown(
choices=FREE_MODELS,
value=FREE_MODELS[0],
label="Select Model",
info="Choose from 5 curated free models on OpenRouter (24B to 671B parameters)"
)
dataset_name = gr.Textbox(
label="HuggingFace Dataset (Full Name)",
value="gsm8k",
placeholder="e.g., gsm8k, glue, stanfordnlp/imdb",
info="Dataset name from HuggingFace Hub. Configs auto-detected (e.g., 'glue' → 'glue:sst2')"
)
dataset_split = gr.Textbox(
label="Dataset Split",
value="train",
placeholder="e.g., train, test, validation"
)
input_field = gr.Textbox(
label="Input Field Name",
value="question",
placeholder="e.g., question, sentence, text",
info="The field containing inputs to process"
)
target_field = gr.Textbox(
label="Target Field Name",
value="answer",
placeholder="e.g., answer, label, target",
info="The field containing expected outputs"
)
initial_prompt = gr.TextArea(
label="Initial Prompt",
value="{input}\n\nAnswer:",
lines=6,
info="Use {input} as placeholder for dataset inputs. Start simple - evolution will improve it!"
)
# Button outside the column for better visibility
with gr.Row():
with gr.Column():
optimize_btn = gr.Button("🚀 Validate & Optimize Prompt", variant="primary", size="lg")
# Results section - clearly separated
gr.Markdown("---")
gr.Markdown("## 📊 Results")
with gr.Row():
with gr.Column():
summary = gr.Markdown("Click 'Validate & Optimize Prompt' to start optimization...", visible=True)
with gr.Row():
with gr.Column():
initial_results = gr.Markdown("### Initial Results\nWill appear here after validation...", visible=True)
with gr.Column():
final_results = gr.Markdown("### Final Results\nWill appear here after optimization...", visible=True)
with gr.Row():
with gr.Column():
evolution_progress = gr.Markdown("### Evolution Progress\nEvolution progress will appear here during optimization...", visible=True)
# Prompt History Browser
gr.Markdown("---")
gr.Markdown("## 📜 Prompt History Browser")
gr.Markdown("Browse through the progression of **best** prompts found during evolution. Only shows prompts that improved the score (no duplicates or intermediate programs).")
with gr.Row():
with gr.Column(scale=8):
prompt_display = gr.TextArea(
label="",
lines=10,
interactive=False,
placeholder="Prompts will appear here after optimization completes...",
show_label=False
)
with gr.Column(scale=2):
prompt_counter = gr.Markdown("**Prompt**: -/-")
prev_btn = gr.Button("⬅️ Previous", size="sm")
next_btn = gr.Button("Next ➡️", size="sm")
gr.Markdown("**Prompt Types:**\n- First = Initial\n- Middle = Intermediate\n- Last = Final Best")
# Hidden state to store prompt history and current index
prompt_history_state = gr.State([])
current_prompt_index = gr.State(0)
# Documentation section - in collapsible accordion
gr.Markdown("---")
with gr.Accordion("📚 Documentation & Examples", open=False):
gr.Markdown("""
### Example Datasets & Fields:
| Dataset | Split | Input Field | Target Field | Task |
|---------|-------|-------------|--------------|------|
| stanfordnlp/imdb | test | text | label | Sentiment Analysis |
| rajpurkar/squad | validation | question | answers | Question Answering |
| dair-ai/emotion | test | text | label | Emotion Classification |
| openai/gsm8k | test | question | answer | Math Reasoning |
| fancyzhx/ag_news | test | text | label | News Classification |
### About This Demo Space:
**This is a demonstration space** showcasing OpenEvolve's prompt optimization capabilities.
The interface shows you how the system works, but **you'll need to set up your own instance to run optimizations**.
### How to Run This Yourself:
1. **Clone this Space**: Click "⋮" (three dots) at top-right → "Duplicate this Space"
2. **Set Environment Variables** in your cloned Space's settings:
- `OPENAI_API_KEY`: Your OpenRouter API key (get free key at [openrouter.ai/keys](https://openrouter.ai/keys))
- `HF_TOKEN`: (Optional) HuggingFace token for private datasets
3. **Configure Your Optimization**:
- Dataset: Use full name format (e.g., `stanfordnlp/imdb` or `openai/gsm8k`)
- Fields: Specify exact field names from the dataset schema
- Model: Choose from 5 curated free models (larger models = better results but slower/rate-limited)
4. **Run & Monitor**:
- All inputs are validated before starting
- Evolution uses staged evaluation (20 samples first, then 80 more if promising)
- Saves API calls by early-stopping poor prompts (< 50% accuracy)
- Watch evolution progress visualization in real-time
### About OpenEvolve:
OpenEvolve is an open-source evolutionary optimization framework. Learn more at:
- [GitHub Repository](https://github.com/algorithmicsuperintelligence/openevolve)
- [Documentation](https://github.com/algorithmicsuperintelligence/openevolve#readme)
""")
# Navigation functions for prompt browser
def show_previous_prompt(prompts, current_idx):
if not prompts or len(prompts) == 0:
return "", "**Prompt**: -/-", 0
new_idx = max(0, current_idx - 1)
prompt_obj = prompts[new_idx]
# Handle both old string format and new dict format
if isinstance(prompt_obj, dict):
prompt_text = prompt_obj["prompt"]
score = prompt_obj.get("score", 0.0)
label = prompt_obj.get("label", "")
counter_text = f"**{label}** ({new_idx + 1}/{len(prompts)}) | Score: {score:.2%}"
else:
prompt_text = prompt_obj
counter_text = f"**Prompt**: {new_idx + 1}/{len(prompts)}"
return prompt_text, counter_text, new_idx
def show_next_prompt(prompts, current_idx):
if not prompts or len(prompts) == 0:
return "", "**Prompt**: -/-", 0
new_idx = min(len(prompts) - 1, current_idx + 1)
prompt_obj = prompts[new_idx]
# Handle both old string format and new dict format
if isinstance(prompt_obj, dict):
prompt_text = prompt_obj["prompt"]
score = prompt_obj.get("score", 0.0)
label = prompt_obj.get("label", "")
counter_text = f"**{label}** ({new_idx + 1}/{len(prompts)}) | Score: {score:.2%}"
else:
prompt_text = prompt_obj
counter_text = f"**Prompt**: {new_idx + 1}/{len(prompts)}"
return prompt_text, counter_text, new_idx
def update_prompt_display(prompts, idx, total):
if not prompts or len(prompts) == 0:
return "", "**Prompt**: -/-"
idx = min(idx, len(prompts) - 1)
prompt_obj = prompts[idx]
# Handle both old string format and new dict format
if isinstance(prompt_obj, dict):
prompt_text = prompt_obj["prompt"]
score = prompt_obj.get("score", 0.0)
label = prompt_obj.get("label", "")
counter_text = f"**{label}** ({idx + 1}/{len(prompts)}) | Score: {score:.2%}"
else:
prompt_text = prompt_obj
counter_text = f"**Prompt**: {idx + 1}/{len(prompts)}"
return prompt_text, counter_text
# Wire up the optimize button
optimize_result = optimize_btn.click(
fn=optimize_prompt,
inputs=[initial_prompt, dataset_name, dataset_split, model,
input_field, target_field],
outputs=[summary, initial_results, evolution_progress, final_results,
prompt_history_state, current_prompt_index, gr.State()] # dummy for total
)
# Update prompt display when optimization completes
optimize_result.then(
fn=update_prompt_display,
inputs=[prompt_history_state, current_prompt_index, gr.State()],
outputs=[prompt_display, prompt_counter]
)
# Wire up navigation buttons
prev_btn.click(
fn=show_previous_prompt,
inputs=[prompt_history_state, current_prompt_index],
outputs=[prompt_display, prompt_counter, current_prompt_index]
)
next_btn.click(
fn=show_next_prompt,
inputs=[prompt_history_state, current_prompt_index],
outputs=[prompt_display, prompt_counter, current_prompt_index]
)
if __name__ == "__main__":
demo.launch()