Solves 500 Errors For Some Users

#1
.gitattributes CHANGED
@@ -25,7 +25,6 @@
25
  *.safetensors filter=lfs diff=lfs merge=lfs -text
26
  saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
  *.tar.* filter=lfs diff=lfs merge=lfs -text
28
- *.tar filter=lfs diff=lfs merge=lfs -text
29
  *.tflite filter=lfs diff=lfs merge=lfs -text
30
  *.tgz filter=lfs diff=lfs merge=lfs -text
31
  *.wasm filter=lfs diff=lfs merge=lfs -text
@@ -33,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
25
  *.safetensors filter=lfs diff=lfs merge=lfs -text
26
  saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
  *.tar.* filter=lfs diff=lfs merge=lfs -text
 
28
  *.tflite filter=lfs diff=lfs merge=lfs -text
29
  *.tgz filter=lfs diff=lfs merge=lfs -text
30
  *.wasm filter=lfs diff=lfs merge=lfs -text
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ scale-hf-logo.png filter=lfs diff=lfs merge=lfs -text
.gitignore CHANGED
@@ -1 +1,13 @@
1
- __pycache__
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ auto_evals/
2
+ venv/
3
+ __pycache__/
4
+ .env
5
+ .ipynb_checkpoints
6
+ *ipynb
7
+ .vscode/
8
+
9
+ eval-queue/
10
+ eval-results/
11
+ eval-queue-bk/
12
+ eval-results-bk/
13
+ logs/
.pre-commit-config.yaml ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ default_language_version:
16
+ python: python3
17
+
18
+ ci:
19
+ autofix_prs: true
20
+ autoupdate_commit_msg: '[pre-commit.ci] pre-commit suggestions'
21
+ autoupdate_schedule: quarterly
22
+
23
+ repos:
24
+ - repo: https://github.com/pre-commit/pre-commit-hooks
25
+ rev: v4.3.0
26
+ hooks:
27
+ - id: check-yaml
28
+ - id: check-case-conflict
29
+ - id: detect-private-key
30
+ - id: check-added-large-files
31
+ args: ['--maxkb=1000']
32
+ - id: requirements-txt-fixer
33
+ - id: end-of-file-fixer
34
+ - id: trailing-whitespace
35
+
36
+ - repo: https://github.com/PyCQA/isort
37
+ rev: 5.12.0
38
+ hooks:
39
+ - id: isort
40
+ name: Format imports
41
+
42
+ - repo: https://github.com/psf/black
43
+ rev: 22.12.0
44
+ hooks:
45
+ - id: black
46
+ name: Format code
47
+ additional_dependencies: ['click==8.0.2']
48
+
49
+ - repo: https://github.com/charliermarsh/ruff-pre-commit
50
+ # Ruff version.
51
+ rev: 'v0.0.267'
52
+ hooks:
53
+ - id: ruff
.streamlit/config.toml DELETED
@@ -1,2 +0,0 @@
1
- [theme]
2
- base = "light"
 
 
 
Dockerfile DELETED
@@ -1,21 +0,0 @@
1
- FROM python:3.13.5-slim
2
-
3
- RUN useradd -m -u 1000 user
4
- WORKDIR /app
5
-
6
- RUN apt-get update && apt-get install -y \
7
- build-essential \
8
- curl \
9
- git \
10
- && rm -rf /var/lib/apt/lists/*
11
-
12
- COPY --chown=user ./requirements.txt requirements.txt
13
- COPY --chown=user . /app
14
-
15
- RUN pip3 install -r requirements.txt
16
-
17
- EXPOSE 8501
18
-
19
- HEALTHCHECK CMD curl --fail http://localhost:8501/_stcore/health
20
-
21
- ENTRYPOINT ["streamlit", "run", "fev-leaderboard-app.py", "--server.port=8501", "--server.address=0.0.0.0"]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Makefile ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ .PHONY: style format
2
+
3
+
4
+ style:
5
+ python -m black --line-length 119 .
6
+ python -m isort .
7
+ ruff check --fix .
8
+
9
+
10
+ quality:
11
+ python -m black --check --line-length 119 .
12
+ python -m isort --check-only .
13
+ ruff check .
README.md CHANGED
@@ -1,20 +1,44 @@
1
  ---
2
- title: fev-bench
3
- emoji: 🏆
4
  colorFrom: green
5
  colorTo: indigo
6
- sdk: docker
7
- app_port: 8501
8
- tags:
9
- - streamlit
10
- pinned: false
11
- short_description: Forecast evaluation benchmark
12
  license: apache-2.0
13
  ---
14
 
15
- # Welcome to Streamlit!
16
 
17
- Edit `/src/streamlit_app.py` to customize this app to your heart's desire. :heart:
18
 
19
- If you have any questions, checkout our [documentation](https://docs.streamlit.io) and [community
20
- forums](https://discuss.streamlit.io).
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ title: Fev Leaderboard
3
+ emoji: 🥇
4
  colorFrom: green
5
  colorTo: indigo
6
+ sdk: gradio
7
+ app_file: app.py
8
+ pinned: true
 
 
 
9
  license: apache-2.0
10
  ---
11
 
12
+ # Start the configuration
13
 
14
+ Most of the variables to change for a default leaderboard are in `src/env.py` (replace the path for your leaderboard) and `src/about.py` (for tasks).
15
 
16
+ Results files should have the following format and be stored as json files:
17
+ ```json
18
+ {
19
+ "config": {
20
+ "model_dtype": "torch.float16", # or torch.bfloat16 or 8bit or 4bit
21
+ "model_name": "path of the model on the hub: org/model",
22
+ "model_sha": "revision on the hub",
23
+ },
24
+ "results": {
25
+ "task_name": {
26
+ "metric_name": score,
27
+ },
28
+ "task_name2": {
29
+ "metric_name": score,
30
+ }
31
+ }
32
+ }
33
+ ```
34
+
35
+ Request files are created automatically by this tool.
36
+
37
+ If you encounter problem on the space, don't hesitate to restart it to remove the create eval-queue, eval-queue-bk, eval-results and eval-results-bk created folder.
38
+
39
+ # Code logic for more complex edits
40
+
41
+ You'll find
42
+ - the main table' columns names and properties in `src/display/utils.py`
43
+ - the logic to read all results and request files, then convert them in dataframe lines, in `src/leaderboard/read_evals.py`, and `src/populate.py`
44
+ - the logic to allow or filter submissions in `src/submission/submit.py` and `src/submission/check_validity.py`
pages/chronos_bench_ii.py → app.py RENAMED
@@ -1,41 +1,18 @@
1
- import sys
2
- from pathlib import Path
3
-
4
- sys.path.append(str(Path(__file__).parent.parent))
5
-
6
  import fev
 
7
  import pandas as pd
8
- import streamlit as st
9
- from streamlit.elements.lib.column_types import ColumnConfig
10
-
11
- from src.strings import (
12
- CHRONOS_BENCHMARK_BASIC_INFO,
13
- CHRONOS_BENCHMARK_DETAILS,
14
- CITATION_CHRONOS,
15
- CITATION_FEV,
16
- CITATION_HEADER,
17
- PAIRWISE_BENCHMARK_DETAILS,
18
- get_pivot_legend,
19
- )
20
- from src.utils import (
21
- construct_bar_chart,
22
- construct_pairwise_chart,
23
- construct_pivot_table,
24
- format_leaderboard,
25
- format_metric_name,
26
- get_metric_description,
27
  )
28
 
29
- st.set_page_config(layout="wide", page_title="FEV Benchmark Leaderboard", page_icon=":material/trophy:")
30
 
31
- TITLE = "<h1 style='text-align: center; font-size: 350%;'>Chronos Benchmark II</h1>"
32
- BASELINE_MODEL = "seasonal_naive"
33
- LEAKAGE_IMPUTATION_MODEL = "chronos_bolt_base"
34
- SORT_COL = "win_rate"
35
- N_RESAMPLES_FOR_CI = 1000
36
- TOP_K_MODELS_TO_PLOT = 15
37
- AVAILABLE_METRICS = ["WQL", "MASE"]
38
- SUMMARY_URLS = [
39
  "https://raw.githubusercontent.com/autogluon/fev/refs/heads/main/benchmarks/chronos_zeroshot/results/auto_arima.csv",
40
  "https://raw.githubusercontent.com/autogluon/fev/refs/heads/main/benchmarks/chronos_zeroshot/results/auto_ets.csv",
41
  "https://raw.githubusercontent.com/autogluon/fev/refs/heads/main/benchmarks/chronos_zeroshot/results/auto_theta.csv",
@@ -58,122 +35,63 @@ SUMMARY_URLS = [
58
  "https://raw.githubusercontent.com/autogluon/fev/refs/heads/main/benchmarks/chronos_zeroshot/results/tirex.csv",
59
  ]
60
 
61
-
62
- @st.cache_data()
63
- def load_summaries():
64
- summaries = []
65
- for url in SUMMARY_URLS:
66
- df = pd.read_csv(url)
67
- summaries.append(df)
68
- return pd.concat(summaries, ignore_index=True)
69
-
70
-
71
- @st.cache_data()
72
- def get_leaderboard(metric_name: str) -> pd.DataFrame:
73
- summaries = load_summaries()
74
- lb = fev.analysis.leaderboard(
75
- summaries=summaries,
76
- metric_column=metric_name,
77
- missing_strategy="impute",
78
- baseline_model=BASELINE_MODEL,
79
- leakage_imputation_model=LEAKAGE_IMPUTATION_MODEL,
80
- )
81
- lb = lb.astype("float64").reset_index()
82
-
83
- lb["skill_score"] = lb["skill_score"] * 100
84
- lb["win_rate"] = lb["win_rate"] * 100
85
- lb["num_failures"] = lb["num_failures"] / summaries["task_name"].nunique() * 100
86
- return lb
87
-
88
-
89
- @st.cache_data()
90
- def get_pairwise(metric_name: str, included_models: list[str]) -> pd.DataFrame:
91
- if BASELINE_MODEL not in included_models:
92
- included_models = included_models + [BASELINE_MODEL]
93
- summaries = load_summaries()
94
- return (
95
- fev.analysis.pairwise_comparison(
96
- summaries,
97
- included_models=included_models,
98
- metric_column=metric_name,
99
- baseline_model=BASELINE_MODEL,
100
- missing_strategy="impute",
101
- n_resamples=N_RESAMPLES_FOR_CI,
102
- leakage_imputation_model=LEAKAGE_IMPUTATION_MODEL,
103
- )
104
- .round(3)
105
- .reset_index()
106
- )
107
-
108
-
109
- with st.sidebar:
110
- selected_metric = st.selectbox("Evaluation Metric", options=AVAILABLE_METRICS, format_func=format_metric_name)
111
- st.caption(get_metric_description(selected_metric))
112
-
113
- cols = st.columns(spec=[0.025, 0.95, 0.025])
114
-
115
- with cols[1] as main_container:
116
- st.markdown(TITLE, unsafe_allow_html=True)
117
-
118
- metric_df = get_leaderboard(selected_metric).sort_values(by=SORT_COL, ascending=False)
119
- top_k_models = metric_df.head(TOP_K_MODELS_TO_PLOT)["model_name"].tolist()
120
- pairwise_df = get_pairwise(selected_metric, included_models=top_k_models)
121
-
122
- st.markdown("## :material/trophy: Leaderboard", unsafe_allow_html=True)
123
- st.markdown(CHRONOS_BENCHMARK_BASIC_INFO, unsafe_allow_html=True)
124
- df_styled = format_leaderboard(metric_df)
125
- st.dataframe(
126
- df_styled,
127
- use_container_width=True,
128
- hide_index=True,
129
- column_config={
130
- "model_name": ColumnConfig(label="Model Name", alignment="left"),
131
- "win_rate": st.column_config.NumberColumn(label="Avg. win rate (%)", format="%.1f"),
132
- "skill_score": st.column_config.NumberColumn(label="Skill score (%)", format="%.1f"),
133
- "median_inference_time_s": st.column_config.NumberColumn(label="Median runtime (s)", format="%.1f"),
134
- "training_corpus_overlap": st.column_config.NumberColumn(label="Leakage (%)", format="%d"),
135
- "num_failures": st.column_config.NumberColumn(label="Failed tasks (%)", format="%.0f"),
136
- "zero_shot": ColumnConfig(label="Zero-shot", alignment="center"),
137
- "org": ColumnConfig(label="Organization", alignment="left"),
138
- "link": st.column_config.LinkColumn(label="Link", display_text=":material/open_in_new:"),
139
- },
140
- )
141
-
142
- with st.expander("See details"):
143
- st.markdown(CHRONOS_BENCHMARK_DETAILS, unsafe_allow_html=True)
144
-
145
- st.markdown("## :material/bar_chart: Pairwise comparison", unsafe_allow_html=True)
146
- chart_col_1, _, chart_col_2 = st.columns(spec=[0.45, 0.1, 0.45])
147
-
148
- with chart_col_1:
149
- st.altair_chart(
150
- construct_pairwise_chart(pairwise_df, col="win_rate", metric_name=selected_metric),
151
- use_container_width=True,
152
- )
153
-
154
- with chart_col_2:
155
- st.altair_chart(
156
- construct_pairwise_chart(pairwise_df, col="skill_score", metric_name=selected_metric),
157
- use_container_width=True,
158
- )
159
-
160
- with st.expander("See details"):
161
- st.markdown(PAIRWISE_BENCHMARK_DETAILS, unsafe_allow_html=True)
162
-
163
- st.markdown("## :material/table_chart: Results for individual tasks", unsafe_allow_html=True)
164
- with st.expander("Show detailed results"):
165
- st.markdown(get_pivot_legend(BASELINE_MODEL, LEAKAGE_IMPUTATION_MODEL), unsafe_allow_html=True)
166
- st.dataframe(
167
- construct_pivot_table(
168
- summaries=load_summaries(),
169
- metric_name=selected_metric,
170
- baseline_model=BASELINE_MODEL,
171
- leakage_imputation_model=LEAKAGE_IMPUTATION_MODEL,
172
- )
173
- )
174
-
175
- st.divider()
176
- st.markdown("### :material/format_quote: Citation", unsafe_allow_html=True)
177
- st.markdown(CITATION_HEADER)
178
- st.markdown(CITATION_FEV)
179
- st.markdown(CITATION_CHRONOS)
 
 
 
 
 
 
1
  import fev
2
+ import gradio as gr
3
  import pandas as pd
4
+
5
+ from src import about
6
+ from src.custom_html_js import custom_css
7
+ from src.formatting import make_clickable_model
8
+
9
+ # Load the CSV data into a pandas DataFrame
10
+ df = pd.read_csv(
11
+ "https://raw.githubusercontent.com/autogluon/fev/refs/heads/main/benchmarks/chronos_zeroshot/results/seasonal_naive.csv"
 
 
 
 
 
 
 
 
 
 
 
12
  )
13
 
 
14
 
15
+ summary_urls = [
 
 
 
 
 
 
 
16
  "https://raw.githubusercontent.com/autogluon/fev/refs/heads/main/benchmarks/chronos_zeroshot/results/auto_arima.csv",
17
  "https://raw.githubusercontent.com/autogluon/fev/refs/heads/main/benchmarks/chronos_zeroshot/results/auto_ets.csv",
18
  "https://raw.githubusercontent.com/autogluon/fev/refs/heads/main/benchmarks/chronos_zeroshot/results/auto_theta.csv",
 
35
  "https://raw.githubusercontent.com/autogluon/fev/refs/heads/main/benchmarks/chronos_zeroshot/results/tirex.csv",
36
  ]
37
 
38
+ rename_cols = {
39
+ "gmean_relative_error": "Average relative error",
40
+ "avg_rank": "Average rank",
41
+ "median_inference_time_s": "Median inference time (s)",
42
+ "training_corpus_overlap": "Training corpus overlap (%)",
43
+ }
44
+ selected_cols = list(rename_cols.keys())
45
+
46
+
47
+ def highlight_zeroshot(styler):
48
+ """Highlight training overlap for zero-shot models with bold green."""
49
+
50
+ def style_func(val):
51
+ if val == 0:
52
+ return "color: green; font-weight: bold"
53
+ else:
54
+ return "color: black"
55
+
56
+ return styler.map(style_func, subset=["Training corpus overlap (%)"])
57
+
58
+
59
+ leaderboards = {}
60
+ for metric in ["WQL", "MASE"]:
61
+ lb = fev.leaderboard(summary_urls, metric_column=metric)[selected_cols].rename(columns=rename_cols)
62
+ lb = lb.astype("float64").round(3).reset_index()
63
+ lb["Training corpus overlap (%)"] = (lb["Training corpus overlap (%)"] * 100).round(1)
64
+ lb["model_name"] = lb["model_name"].apply(make_clickable_model)
65
+ leaderboards[metric] = highlight_zeroshot(lb.style).format(precision=3)
66
+
67
+
68
+ with gr.Blocks(css=custom_css) as demo:
69
+ gr.HTML(about.TITLE)
70
+ gr.Markdown(about.INTRODUCTION_TEXT, elem_classes="markdown-text")
71
+
72
+ with gr.Tabs(elem_classes="tab-buttons"):
73
+ with gr.Tab("🏅 Chronos Benchmark II", id=0):
74
+ with gr.Column():
75
+ gr.Markdown(about.CHRONOS_BENCHMARK, elem_classes="markdown-text")
76
+ with gr.Tabs():
77
+ with gr.Tab("📊 Probabilistic forecast (WQL)"):
78
+ gr.Markdown("""Forecast accuracy measured by Weighted Quantile Loss.""")
79
+ gr.Dataframe(
80
+ value=leaderboards["WQL"],
81
+ datatype=["markdown", "number", "number", "number"],
82
+ interactive=False,
83
+ )
84
+
85
+ with gr.Tab("📈 Point forecast (MASE)"):
86
+ gr.Markdown("""Forecast accuracy measured by Mean Absolute Scaled Error.""")
87
+ gr.Dataframe(
88
+ value=leaderboards["MASE"],
89
+ datatype=["markdown", "number", "number", "number"],
90
+ interactive=False,
91
+ )
92
+
93
+ with gr.Tab("📝 About", id=1):
94
+ gr.Markdown(about.ABOUT_LEADERBOARD)
95
+
96
+ if __name__ == "__main__":
97
+ demo.launch(ssr_mode=False)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fev-leaderboard-app.py DELETED
@@ -1,9 +0,0 @@
1
- import streamlit as st
2
-
3
- pages = [
4
- st.Page("pages/fev_bench.py", title="fev-bench", icon=":material/trophy:"),
5
- st.Page("pages/about.py", title="About", icon=":material/info:"),
6
- ]
7
-
8
- page = st.navigation(pages)
9
- page.run()
 
 
 
 
 
 
 
 
 
 
pages/about.py DELETED
@@ -1,19 +0,0 @@
1
- import streamlit as st
2
-
3
- ABOUT_LEADERBOARD = """
4
- ## About
5
-
6
- [**fev**](https://github.com/autogluon/fev) is a lightweight wrapper around the 🤗 [datasets](https://huggingface.co/docs/datasets/en/index) library designed to streamline
7
- benchmarking of time series forecasting models.
8
-
9
- ### 📚 Resources
10
- - **Documentation**: [Official docs](https://autogluon.github.io/fev/latest/)
11
- - **Publication**: ["fev-bench: A Realistic Benchmark for Time Series Forecasting"](https://arxiv.org/abs/2509.26468)
12
- - **Source Code**: [GitHub repository](https://github.com/autogluon/fev)
13
- - **Issues & Questions**: [GitHub Issues](https://github.com/autogluon/fev/issues)
14
-
15
- ### 🚀 Submit Your Model
16
- Ready to add your model to the leaderboard? Follow this [tutorial](https://autogluon.github.io/fev/latest/tutorials/05-add-your-model/) to evaluate your model with fev and contribute your results.
17
- """
18
- st.set_page_config(layout="wide", page_title="About FEV", page_icon=":material/info:")
19
- st.markdown(ABOUT_LEADERBOARD)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
pages/fev_bench.py DELETED
@@ -1,143 +0,0 @@
1
- import sys
2
- from pathlib import Path
3
-
4
- sys.path.append(str(Path(__file__).parent))
5
-
6
- import pandas as pd
7
- import streamlit as st
8
- from streamlit.elements.lib.column_types import ColumnConfig
9
-
10
- from src.strings import (
11
- CITATION_FEV,
12
- CITATION_HEADER,
13
- FEV_BENCHMARK_BASIC_INFO,
14
- FEV_BENCHMARK_DETAILS,
15
- PAIRWISE_BENCHMARK_DETAILS,
16
- get_pivot_legend,
17
- )
18
- from src.utils import (
19
- COLORS,
20
- construct_pairwise_chart,
21
- format_leaderboard,
22
- format_metric_name,
23
- get_metric_description,
24
- )
25
-
26
- st.set_page_config(layout="wide", page_title="fev leaderboard", page_icon=":material/trophy:")
27
-
28
- TITLE = "<h1 style='text-align: center; font-size: 350%;'>fev-bench</h1>"
29
- SORT_COL = "win_rate"
30
- AVAILABLE_METRICS = ["SQL", "MASE", "WQL", "WAPE"]
31
-
32
-
33
- @st.cache_data()
34
- def get_leaderboard(metric_name: str) -> pd.DataFrame:
35
- return pd.read_csv(f"tables/leaderboard_{metric_name}.csv")
36
-
37
-
38
- @st.cache_data()
39
- def get_pairwise(metric_name: str) -> pd.DataFrame:
40
- return pd.read_csv(f"tables/pairwise_{metric_name}.csv")
41
-
42
-
43
- @st.cache_data()
44
- def get_pivot_table(metric_name: str) -> tuple[pd.DataFrame, pd.DataFrame, pd.DataFrame]:
45
- pivot_df = pd.read_csv(f"tables/pivot_{metric_name}.csv")
46
- baseline_imputed = pd.read_csv(f"tables/pivot_{metric_name}_baseline_imputed.csv")
47
- leakage_imputed = pd.read_csv(f"tables/pivot_{metric_name}_leakage_imputed.csv")
48
- return pivot_df, baseline_imputed, leakage_imputed
49
-
50
-
51
- with st.sidebar:
52
- selected_metric = st.selectbox("Evaluation Metric", options=AVAILABLE_METRICS, format_func=format_metric_name)
53
- st.caption(get_metric_description(selected_metric))
54
-
55
- cols = st.columns(spec=[0.025, 0.95, 0.025])
56
-
57
- with cols[1] as main_container:
58
- st.markdown(TITLE, unsafe_allow_html=True)
59
-
60
- metric_df = get_leaderboard(selected_metric).sort_values(by=SORT_COL, ascending=False)
61
- pairwise_df = get_pairwise(selected_metric)
62
-
63
- st.markdown("## :material/trophy: Leaderboard", unsafe_allow_html=True)
64
- st.markdown(FEV_BENCHMARK_BASIC_INFO, unsafe_allow_html=True)
65
- df_styled = format_leaderboard(metric_df)
66
- st.dataframe(
67
- df_styled,
68
- width="stretch",
69
- hide_index=True,
70
- column_config={
71
- "model_name": ColumnConfig(label="Model Name", alignment="left"),
72
- "win_rate": st.column_config.NumberColumn(label="Avg. win rate (%)", format="%.1f"),
73
- "skill_score": st.column_config.NumberColumn(label="Skill score (%)", format="%.1f"),
74
- "median_inference_time_s": st.column_config.NumberColumn(label="Median runtime (s)", format="%.1f"),
75
- "training_corpus_overlap": st.column_config.NumberColumn(label="Leakage (%)", format="%d"),
76
- "num_failures": st.column_config.NumberColumn(label="Failed tasks (%)", format="%.0f"),
77
- "zero_shot": ColumnConfig(label="Zero-shot", alignment="center"),
78
- "org": ColumnConfig(label="Organization", alignment="left"),
79
- "link": st.column_config.LinkColumn(label="Link", display_text="🔗"),
80
- },
81
- )
82
-
83
- with st.expander("See details"):
84
- st.markdown(FEV_BENCHMARK_DETAILS, unsafe_allow_html=True)
85
-
86
- st.markdown("## :material/bar_chart: Pairwise comparison", unsafe_allow_html=True)
87
- chart_col_1, _, chart_col_2 = st.columns(spec=[0.45, 0.1, 0.45])
88
-
89
- with chart_col_1:
90
- st.altair_chart(
91
- construct_pairwise_chart(pairwise_df, col="win_rate", metric_name=selected_metric),
92
- use_container_width=True,
93
- )
94
-
95
- with chart_col_2:
96
- st.altair_chart(
97
- construct_pairwise_chart(pairwise_df, col="skill_score", metric_name=selected_metric),
98
- use_container_width=True,
99
- )
100
-
101
- with st.expander("See details"):
102
- st.markdown(PAIRWISE_BENCHMARK_DETAILS, unsafe_allow_html=True)
103
-
104
- st.markdown("## :material/table_chart: Results for individual tasks", unsafe_allow_html=True)
105
- with st.expander("Show detailed results"):
106
- st.markdown(get_pivot_legend("Seasonal Naive", "Chronos-Bolt"), unsafe_allow_html=True)
107
- pivot_df, baseline_imputed, leakage_imputed = get_pivot_table(selected_metric)
108
- pivot_df = pivot_df.set_index("Task name")
109
- baseline_imputed = baseline_imputed.set_index("Task name")
110
- leakage_imputed = leakage_imputed.set_index("Task name")
111
-
112
- def style_pivot_table(errors, is_baseline_imputed, is_leakage_imputed):
113
- rank_colors = {1: COLORS["gold"], 2: COLORS["silver"], 3: COLORS["bronze"]}
114
-
115
- def highlight_by_position(styler):
116
- for row_idx in errors.index:
117
- row_ranks = errors.loc[row_idx].rank(method="min")
118
- for col_idx in errors.columns:
119
- rank = row_ranks[col_idx]
120
- style_parts = []
121
- if rank <= 3:
122
- style_parts.append(f"background-color: {rank_colors[rank]}")
123
- if is_leakage_imputed.loc[row_idx, col_idx]:
124
- style_parts.append(f"color: {COLORS['leakage_impute']}")
125
- elif is_baseline_imputed.loc[row_idx, col_idx]:
126
- style_parts.append(f"color: {COLORS['failure_impute']}")
127
- elif not style_parts:
128
- style_parts.append(f"color: {COLORS['text_default']}")
129
- if style_parts:
130
- styler = styler.map(
131
- lambda x, s="; ".join(style_parts): s,
132
- subset=pd.IndexSlice[row_idx:row_idx, col_idx:col_idx],
133
- )
134
- return styler
135
-
136
- return highlight_by_position(errors.style).format(precision=3)
137
-
138
- st.dataframe(style_pivot_table(pivot_df, baseline_imputed, leakage_imputed))
139
-
140
- st.divider()
141
- st.markdown("### :material/format_quote: Citation", unsafe_allow_html=True)
142
- st.markdown(CITATION_HEADER)
143
- st.markdown(CITATION_FEV)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
pyproject.toml ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [tool.ruff]
2
+ # Enable pycodestyle (`E`) and Pyflakes (`F`) codes by default.
3
+ select = ["E", "F"]
4
+ ignore = ["E501"] # line too long (black is taking care of this)
5
+ line-length = 119
6
+ fixable = ["A", "B", "C", "D", "E", "F", "G", "I", "N", "Q", "S", "T", "W", "ANN", "ARG", "BLE", "COM", "DJ", "DTZ", "EM", "ERA", "EXE", "FBT", "ICN", "INP", "ISC", "NPY", "PD", "PGH", "PIE", "PL", "PT", "PTH", "PYI", "RET", "RSE", "RUF", "SIM", "SLF", "TCH", "TID", "TRY", "UP", "YTT"]
7
+
8
+ [tool.isort]
9
+ profile = "black"
10
+ line_length = 119
11
+
12
+ [tool.black]
13
+ line-length = 119
requirements.txt CHANGED
@@ -1,6 +1,11 @@
 
 
 
 
 
 
 
1
  matplotlib
2
  numpy
3
  pandas
4
- streamlit==1.49.1
5
- fev>=0.6.0
6
- altair>=5.5.0
 
1
+ APScheduler
2
+ black
3
+ datasets
4
+ gradio
5
+ gradio[oauth]
6
+ gradio_client
7
+ huggingface-hub>=0.18.0
8
  matplotlib
9
  numpy
10
  pandas
11
+ fev==0.4.0
 
 
save_tables.py DELETED
@@ -1,135 +0,0 @@
1
- #!/usr/bin/env python3
2
-
3
- import argparse
4
- import os
5
- import sys
6
- from pathlib import Path
7
-
8
- sys.path.append(str(Path(__file__).parent))
9
-
10
- import fev
11
- import pandas as pd
12
-
13
- from src.utils import format_leaderboard
14
-
15
- # Constants from the main app
16
- BASELINE_MODEL = "Seasonal Naive"
17
- LEAKAGE_IMPUTATION_MODEL = "Chronos-Bolt"
18
- SORT_COL = "win_rate"
19
- N_RESAMPLES_FOR_CI = 1000
20
- TOP_K_MODELS_TO_PLOT = 15
21
- AVAILABLE_METRICS = ["SQL", "MASE", "WQL", "WAPE"]
22
-
23
-
24
- def load_summaries(path="."):
25
- csv_files = list(Path(path).glob("*.csv"))
26
- if not csv_files:
27
- raise FileNotFoundError(f"No CSV files found in {path}")
28
- dfs = [pd.read_csv(file) for file in csv_files]
29
- return pd.concat(dfs, ignore_index=True)
30
-
31
-
32
- def compute_leaderboard(summaries: pd.DataFrame, metric_name: str) -> pd.DataFrame:
33
- lb = fev.analysis.leaderboard(
34
- summaries=summaries,
35
- metric_column=metric_name,
36
- missing_strategy="impute",
37
- baseline_model=BASELINE_MODEL,
38
- leakage_imputation_model=LEAKAGE_IMPUTATION_MODEL,
39
- )
40
- lb = lb.astype("float64").reset_index()
41
-
42
- lb["skill_score"] = lb["skill_score"] * 100
43
- lb["win_rate"] = lb["win_rate"] * 100
44
- lb["num_failures"] = lb["num_failures"] / summaries["task_name"].nunique() * 100
45
- return lb
46
-
47
-
48
- def compute_pairwise(summaries: pd.DataFrame, metric_name: str, included_models: list[str]) -> pd.DataFrame:
49
- if BASELINE_MODEL not in included_models:
50
- included_models = included_models + [BASELINE_MODEL]
51
-
52
- return (
53
- fev.analysis.pairwise_comparison(
54
- summaries,
55
- included_models=included_models,
56
- metric_column=metric_name,
57
- baseline_model=BASELINE_MODEL,
58
- missing_strategy="impute",
59
- n_resamples=N_RESAMPLES_FOR_CI,
60
- leakage_imputation_model=LEAKAGE_IMPUTATION_MODEL,
61
- )
62
- .round(3)
63
- .reset_index()
64
- )
65
-
66
-
67
- def compute_pivot_table(summaries: pd.DataFrame, metric_name: str) -> tuple[pd.DataFrame, pd.DataFrame, pd.DataFrame]:
68
- errors = fev.pivot_table(summaries=summaries, metric_column=metric_name, task_columns=["task_name"])
69
- train_overlap = (
70
- fev.pivot_table(summaries=summaries, metric_column="trained_on_this_dataset", task_columns=["task_name"])
71
- .fillna(False)
72
- .astype(bool)
73
- )
74
-
75
- is_imputed_baseline = errors.isna()
76
- is_leakage_imputed = train_overlap
77
-
78
- # Handle imputations
79
- errors = errors.mask(train_overlap, errors[LEAKAGE_IMPUTATION_MODEL], axis=0)
80
- for col in errors.columns:
81
- if col != BASELINE_MODEL:
82
- errors[col] = errors[col].fillna(errors[BASELINE_MODEL])
83
-
84
- errors = errors[errors.rank(axis=1).mean().sort_values().index]
85
- is_imputed_baseline = is_imputed_baseline[errors.columns]
86
- is_leakage_imputed = is_leakage_imputed[errors.columns]
87
-
88
- errors.index.rename("Task name", inplace=True)
89
- is_imputed_baseline.index.rename("Task name", inplace=True)
90
- is_leakage_imputed.index.rename("Task name", inplace=True)
91
-
92
- return errors.reset_index(), is_imputed_baseline.reset_index(), is_leakage_imputed.reset_index()
93
-
94
-
95
- def main():
96
- parser = argparse.ArgumentParser(description="Generate leaderboard tables from CSV summaries")
97
- parser.add_argument("-s", "--summaries-path", default=".", help="Path to directory containing CSV files")
98
- args = parser.parse_args()
99
-
100
- # Create tables directory
101
- tables_dir = Path("tables")
102
- tables_dir.mkdir(exist_ok=True)
103
-
104
- print("Loading summaries...")
105
- summaries = load_summaries(args.summaries_path)
106
-
107
- for metric in AVAILABLE_METRICS:
108
- print(f"Processing {metric}...")
109
-
110
- # Compute leaderboard
111
- leaderboard_df = compute_leaderboard(summaries, metric)
112
- leaderboard_df.to_csv(tables_dir / f"leaderboard_{metric}.csv", index=False)
113
-
114
- # Get top models for pairwise comparison
115
- top_k_models = (
116
- leaderboard_df.sort_values(by=SORT_COL, ascending=False).head(TOP_K_MODELS_TO_PLOT)["model_name"].tolist()
117
- )
118
-
119
- # Compute pairwise comparison
120
- pairwise_df = compute_pairwise(summaries, metric, top_k_models)
121
- pairwise_df.to_csv(tables_dir / f"pairwise_{metric}.csv", index=False)
122
-
123
- # Compute pivot table
124
- pivot_df, baseline_imputed, leakage_imputed = compute_pivot_table(summaries, metric)
125
- pivot_df.to_csv(tables_dir / f"pivot_{metric}.csv", index=False)
126
- baseline_imputed.to_csv(tables_dir / f"pivot_{metric}_baseline_imputed.csv", index=False)
127
- leakage_imputed.to_csv(tables_dir / f"pivot_{metric}_leakage_imputed.csv", index=False)
128
-
129
- print(f" Saved: leaderboard_{metric}.csv, pairwise_{metric}.csv, pivot_{metric}.csv")
130
-
131
- print(f"All tables saved to {tables_dir}/")
132
-
133
-
134
- if __name__ == "__main__":
135
- main()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/about.py ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ TITLE = """<h1 align="center" id="space-title">Forecast evaluation leaderboard</h1>"""
2
+
3
+ # What does your leaderboard evaluate?
4
+ INTRODUCTION_TEXT = """
5
+ This space hosts evaluation results for time series forecasting models.
6
+
7
+ The results are obtained using [fev](https://github.com/autogluon/fev) - a lightweight library for evaluating time series forecasting models.
8
+ """
9
+
10
+ ABOUT_LEADERBOARD = """
11
+ ## What is `fev`?
12
+
13
+ [`fev`](https://github.com/autogluon/fev) is a lightweight wrapper around the 🤗 [`datasets`](https://huggingface.co/docs/datasets/en/index) library that makes it easy to benchmark time series forecasting models.
14
+
15
+ For more information about `fev`, please check out [github.com/autogluon/fev](https://github.com/autogluon/fev).
16
+
17
+ Currently, the results in this space are a minimal proof of concept. We plan to add new benchmark datasets and tasks in the future.
18
+
19
+ ## How is `fev` different from other benchmarking tools?
20
+ Existing forecasting benchmarks usually fall into one of two categories:
21
+
22
+ - Standalone datasets without any supporting infrastructure. These provide no guarantees that the results obtained by different users are comparable. For example, changing the start date or duration of the forecast horizon totally changes the meaning of the scores.
23
+ - Bespoke end-to-end systems that combine models, datasets and forecasting tasks. Such packages usually come with lots of dependencies and assumptions, which makes extending or integrating these libraries into existing systems difficult.
24
+
25
+ `fev` aims for the middle ground - it provides the core benchmarking functionality without introducing unnecessary constraints or bloated dependencies. The library supports point & probabilistic forecasting, different types of covariates, as well as all popular forecasting metrics.
26
+
27
+
28
+ ## Submitting your model
29
+ For instructions on how to evaluate your model using `fev` and contribute your results to the leaderboard, please follow the [instructions in the GitHub repo](https://github.com/autogluon/fev/blob/main/docs/04-models.ipynb).
30
+ """
31
+
32
+ CHRONOS_BENCHMARK = """
33
+ ## Chronos Benchmark II results
34
+
35
+ This tab contains results for various forecasting models on the 27 datasets used in Benchmark II in the publication [Chronos: Learning the Language of Time Series](https://arxiv.org/abs/2403.07815).
36
+
37
+ These datasets were used for zero-shot evaluation of Chronos models (i.e., Chronos models were not trained on these datasets), but some other models did include certain datasets in their training corpus.
38
+
39
+ Each table contains the following information:
40
+
41
+ * **Average relative error**: Geometric mean of the relative errors for each task. The relative error for each task is computed as `model_error / baseline_error`.
42
+ * **Average rank**: Arithmetic mean of the ranks achieved by each model on each task.
43
+ * **Median inference time (s)**: Median of the times required to make predictions for the entire dataset (in seconds).
44
+ * **Training corpus overlap (%)**: Percentage of the datasets used in the benchmark that were included in the model's training corpus. Zero-shot models are highlighted in <span style="color:green; font-weight:bold;">green</span>.
45
+
46
+ Lower values are better for all of the above metrics.
47
+
48
+ Task definitions and the detailed results are available on [GitHub](https://github.com/autogluon/fev/tree/main/benchmarks/chronos_zeroshot). More information for the datasets is available in [Table 3 of the paper](https://arxiv.org/abs/2403.07815).
49
+
50
+ """
src/colors.py DELETED
@@ -1,6 +0,0 @@
1
- # Legacy colors - kept for backward compatibility if needed elsewhere
2
- VERY_PALE_PURPLE = "#e8d9f3"
3
- VERY_PALE_GREEN = "#cffdbc"
4
- VERY_PALE_BLUE = "#d6fffe"
5
- DEEP_LAVENDER = "#8d5eb7"
6
- GRASS_GREEN = "#3f9b0b"
 
 
 
 
 
 
 
src/custom_html_js.py ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ custom_css = """
2
+
3
+ .markdown-text {
4
+ font-size: 20px !important;
5
+ }
6
+
7
+ """
8
+
9
+
10
+ # .tab-buttons button {
11
+ # font-size: 20px;
12
+ # }
13
+
14
+ # #citation-button span {
15
+ # font-size: 16px !important;
16
+ # }
17
+
18
+ # #citation-button textarea {
19
+ # font-size: 16px !important;
20
+ # }
21
+
22
+ # #citation-button > label > button {
23
+ # margin: 6px;
24
+ # transform: scale(1.3);
25
+ # }
26
+
27
+
28
+ # #leaderboard-table-lite {
29
+ # margin-top: 15px
30
+ # }
31
+
32
+ # #search-bar-table-box > div:first-child {
33
+ # background: none;
34
+ # border: none;
35
+ # }
36
+
37
+ # #search-bar {
38
+ # padding: 0px;
39
+ # }
40
+
41
+ # /* Hides the final AutoEvalColumn */
42
+ # #llm-benchmark-tab-table table td:last-child,
43
+ # #llm-benchmark-tab-table table th:last-child {
44
+ # display: none;
45
+ # }
46
+
47
+ # /* Limit the width of the first AutoEvalColumn so that names don't expand too much */
48
+ # table td:first-child,
49
+ # table th:first-child {
50
+ # max-width: 400px;
51
+ # overflow: auto;
52
+ # white-space: nowrap;
53
+ # }
54
+
55
+
56
+ # #scale-logo {
57
+ # border-style: none !important;
58
+ # box-shadow: none;
59
+ # display: block;
60
+ # margin-left: auto;
61
+ # margin-right: auto;
62
+ # max-width: 600px;
63
+ # }
64
+
65
+ # #scale-logo .download {
66
+ # display: none;
67
+ # }
68
+ # #filter_type{
69
+ # border: 0;
70
+ # padding-left: 0;
71
+ # padding-top: 0;
72
+ # }
73
+ # #filter_type label {
74
+ # display: flex;
75
+ # }
76
+ # #filter_type label > span{
77
+ # margin-top: var(--spacing-lg);
78
+ # margin-right: 0.5em;
79
+ # }
80
+ # #filter_type label > .wrap{
81
+ # width: 103px;
82
+ # }
83
+ # #filter_type label > .wrap .wrap-inner{
84
+ # padding: 2px;
85
+ # }
86
+ # #filter_type label > .wrap .wrap-inner input{
87
+ # width: 1px
88
+ # }
89
+ # #filter-columns-type{
90
+ # border:0;
91
+ # padding:0.5;
92
+ # }
93
+ # #filter-columns-size{
94
+ # border:0;
95
+ # padding:0.5;
96
+ # }
97
+ # #box-filter > .form{
98
+ # border: 0
99
+ # }
src/formatting.py ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ def model_hyperlink(link, model_name):
2
+ return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>'
3
+
4
+
5
+ MODEL_URLS = {
6
+ "chronos_tiny": "amazon/chronos-t5-tiny",
7
+ "chronos_mini": "amazon/chronos-t5-mini",
8
+ "chronos_small": "amazon/chronos-t5-small",
9
+ "chronos_base": "amazon/chronos-t5-base",
10
+ "chronos_large": "amazon/chronos-t5-large",
11
+ "chronos_bolt_tiny": "amazon/chronos-bolt-tiny",
12
+ "chronos_bolt_mini": "amazon/chronos-bolt-mini",
13
+ "chronos_bolt_small": "amazon/chronos-bolt-small",
14
+ "chronos_bolt_base": "amazon/chronos-bolt-base",
15
+ "moirai_large": "Salesforce/moirai-1.1-R-large",
16
+ "moirai_base": "Salesforce/moirai-1.1-R-base",
17
+ "moirai_small": "Salesforce/moirai-1.1-R-small",
18
+ "timesfm": "google/timesfm-1.0-200m-pytorch",
19
+ "timesfm-2.0": "google/timesfm-2.0-500m-pytorch",
20
+ "ttm-r2": "ibm-granite/granite-timeseries-ttm-r2",
21
+ "tirex": "NX-AI/TiRex",
22
+ }
23
+
24
+
25
+ def make_clickable_model(model_name):
26
+ if model_name in MODEL_URLS:
27
+ model_path = MODEL_URLS.get(model_name)
28
+ link = f"https://huggingface.co/{model_path}"
29
+ return model_hyperlink(link, model_name)
30
+ else:
31
+ return model_name
src/streamlit_app.py DELETED
@@ -1,9 +0,0 @@
1
- import streamlit as st
2
-
3
- pages = [
4
- st.Page("../pages/fev_bench.py", title="fev-bench", icon=":material/trophy:"),
5
- st.Page("../pages/about.py", title="About", icon=":material/info:"),
6
- ]
7
-
8
- page = st.navigation(pages)
9
- page.run()
 
 
 
 
 
 
 
 
 
 
src/strings.py DELETED
@@ -1,114 +0,0 @@
1
- from src.utils import COLORS
2
-
3
- INTRODUCTION_TEXT = """
4
- This space hosts evaluation results for time series forecasting models. The results are obtained using [fev](https://github.com/autogluon/fev) - a lightweight library for evaluating time series forecasting models.
5
- """
6
-
7
- LEGEND = """
8
- """
9
-
10
- TABLE_INFO = f"""
11
- The leaderboard summarizes the performance of all models evaluated on the 100 tasks comprising **fev-bench**. More details available in the [paper](https://arxiv.org/abs/2509.26468).
12
-
13
- Model names are colored by type: <span style='color: {COLORS["dl_text"]}; font-weight: bold;'>Deep Learning</span> and <span style='color: {COLORS["st_text"]}; font-weight: bold;'>Statistical</span>.
14
-
15
- The full matrix $E_{{rj}}$ with the error of each model $j$ on task $r$ is available at the bottom of the page.
16
-
17
- * **Avg. win rate (%)**: Fraction of all possible model pairs and tasks where this model achieves lower error than the competing model. For model $j$, defined as $W_j = \\frac{{1}}{{R(M-1)}} \\sum_{{r=1}}^{{R}} \\sum_{{k \\neq j}} (\\mathbf{{1}}(E_{{rj}} < E_{{rk}}) + 0.5 \\cdot \\mathbf{{1}}(E_{{rj}} = E_{{rk}}))$ where $R$ is number of tasks, $M$ is number of models. Ties count as half-wins.
18
-
19
- Ranges from 0% (worst) to 100% (best). Higher values are better. This value changes as new models are added to the benchmark.
20
-
21
- * **Skill score (%)**: Measures how much the model reduces forecasting error compared to the Seasonal Naive baseline. Computed as $S_j = 100 \\times (1 - \\sqrt[R]{{\\prod_{{r=1}}^{{R}} E_{{rj}}/E_{{r\\beta}}}})$, where $E_{{r\\beta}}$ is baseline error on task $r$. Relative errors are clipped between 0.01 and 100 before aggregation to avoid extreme outliers. Positive values indicate better-than-baseline performance, negative values indicate worse-than-baseline performance.
22
-
23
- Higher values are better. This value does not change as new models are added to the benchmark.
24
-
25
- * **Median runtime (s)**: Median end-to-end time (training + prediction across all evaluation windows) in seconds. Note that inference times depend on hardware, batch sizes, and implementation details, so these serve as a rough guide rather than definitive performance benchmarks.
26
-
27
- * **Leakage (%)**: For zero-shot models, percentage of benchmark datasets included in the model's training corpus. Results for tasks with reported overlap are replaced with Chronos-Bolt (Base) performance to prevent data leakage.
28
-
29
- * **Failed tasks (%)**: Percentage of tasks where the model failed to produce a forecast. Results for failed tasks are replaced with Seasonal Naive performance.
30
-
31
- * **Zero-shot**: Indicates whether the model can make predictions without task-specific training (✓ = zero-shot, × = task-specific).
32
- """
33
-
34
- CHRONOS_BENCHMARK_BASIC_INFO = f"""
35
- **Chronos Benchmark II** contains results for various forecasting models on the 27 datasets used in Benchmark II in the paper [Chronos: Learning the Language of Time Series](https://arxiv.org/abs/2403.07815). {LEGEND}
36
- """
37
-
38
- CHRONOS_BENCHMARK_DETAILS = f"""
39
- {TABLE_INFO}
40
-
41
- Task definitions and the detailed results are available on [GitHub](https://github.com/autogluon/fev/tree/main/benchmarks/chronos_zeroshot). More information for the datasets is available in [Table 3 of the paper](https://arxiv.org/abs/2403.07815).
42
- """
43
-
44
- FEV_BENCHMARK_BASIC_INFO = f"""
45
- Results for various forecasting models on 100 tasks of the **fev-bench** benchmark, as described in the paper [fev-bench: A Realistic Benchmark for Time Series Forecasting](https://arxiv.org/abs/2509.26468). {LEGEND}
46
- """
47
-
48
- FEV_BENCHMARK_DETAILS = f"""
49
- {TABLE_INFO}
50
-
51
- Task definitions and the detailed results are available on [GitHub](https://github.com/autogluon/fev/tree/main/benchmarks/). Datasets used for evaluation are available on [Hugging Face](https://huggingface.co/datasets/autogluon/fev_datasets).
52
- """
53
-
54
- CITATION_HEADER = """
55
- If you find this leaderboard useful for your research, please consider citing the associated paper(s):
56
-
57
- """
58
- CITATION_FEV = """
59
- ```
60
- @article{shchur2025fev,
61
- title={{fev-bench}: A Realistic Benchmark for Time Series Forecasting},
62
- author={Shchur, Oleksandr and Ansari, Abdul Fatir and Turkmen, Caner and Stella, Lorenzo and Erickson, Nick and Guerron, Pablo and Bohlke-Schneider, Michael and Wang, Yuyang},
63
- year={2025},
64
- eprint={2509.26468},
65
- archivePrefix={arXiv},
66
- primaryClass={cs.LG}
67
- }
68
- ```
69
- """
70
-
71
-
72
- def get_pivot_legend(baseline_model: str, leakage_imputation_model: str) -> str:
73
- return f"""
74
- Task definitions and raw results in CSV format are available on [GitHub](https://github.com/autogluon/fev/tree/main/benchmarks/fev_bench).
75
-
76
- Best results for each task are marked with
77
- <span style='background: {COLORS["gold"]}; color: {COLORS["text_default"]}; padding: 3px; border-radius: 5px;'>🥇 1st</span>
78
- <span style='background: {COLORS["silver"]}; color: {COLORS["text_default"]}; padding: 3px; border-radius: 5px;'>🥈 2nd</span>
79
- <span style='background: {COLORS["bronze"]}; color: {COLORS["text_default"]}; padding: 3px; border-radius: 5px;'>🥉 3rd</span>
80
- <br><br>
81
- **Imputation:**
82
- - <span style='color: {COLORS["failure_impute"]}; font-weight: bold;'>Failed tasks</span> imputed by {baseline_model}
83
- - <span style='color: {COLORS["leakage_impute"]}; font-weight: bold;'>Leaky tasks</span> imputed by {leakage_imputation_model}
84
- """
85
-
86
-
87
- PAIRWISE_BENCHMARK_DETAILS = """
88
- The pairwise charts show head-to-head results between models:
89
-
90
- * **Win rate**: Percentage of tasks where Model 1 achieves lower error than Model 2 (ties count as half-wins).
91
- A value above 50% means Model 1 is more accurate than Model 2 on average.
92
-
93
- * **Skill score**: Average relative error reduction of Model 1 with respect to Model 2.
94
- A positive value means Model 1 reduces forecasting error compared to Model 2 on average.
95
-
96
- **Confidence Intervals**: 95% intervals are estimated using 1000 bootstrap samples over tasks.
97
- For each bootstrap sample, tasks are resampled with replacement and the pairwise win rate / skill score are recomputed.
98
- The intervals correspond to the 2.5th and 97.5th percentiles of these bootstrap distributions,
99
- capturing how model comparisons vary under alternative benchmark compositions.
100
- """
101
-
102
-
103
- CITATION_CHRONOS = """
104
- ```
105
- @article{ansari2024chronos,
106
- title={Chronos: Learning the Language of Time Series},
107
- author={Ansari, Abdul Fatir and Stella, Lorenzo and Turkmen, Caner and Zhang, Xiyuan, and Mercado, Pedro and Shen, Huibin and Shchur, Oleksandr and Rangapuram, Syama Syndar and Pineda Arango, Sebastian and Kapoor, Shubham and Zschiegner, Jasper and Maddix, Danielle C. and Wang, Hao and Mahoney, Michael W. and Torkkola, Kari and Gordon Wilson, Andrew and Bohlke-Schneider, Michael and Wang, Yuyang},
108
- journal={Transactions on Machine Learning Research},
109
- issn={2835-8856},
110
- year={2024},
111
- url={https://openreview.net/forum?id=gerNCVqqtR}
112
- }
113
- ```
114
- """
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/utils.py DELETED
@@ -1,374 +0,0 @@
1
- import altair as alt
2
- import fev
3
- import pandas as pd
4
- import pandas.io.formats.style
5
-
6
- # Color constants - all colors defined in one place
7
-
8
- COLORS = {
9
- "dl_text": "#5A7FA5",
10
- "st_text": "#A5795A",
11
- # "st_text": "#666666",
12
- "bar_fill": "#8d5eb7",
13
- "error_bar": "#222222",
14
- "point": "#111111",
15
- "text_white": "white",
16
- "text_black": "black",
17
- "text_default": "#111",
18
- "gold": "#F7D36B",
19
- "silver": "#E5E7EB",
20
- "bronze": "#E6B089",
21
- "leakage_impute": "#3B82A0",
22
- "failure_impute": "#E07B39",
23
- }
24
- HEATMAP_COLOR_SCHEME = "purplegreen"
25
-
26
- # Model configuration: (url, org, zero_shot, model_type)
27
- MODEL_CONFIG = {
28
- # Chronos Models
29
- "chronos_tiny": ("amazon/chronos-t5-tiny", "AWS", True, "DL"),
30
- "chronos_mini": ("amazon/chronos-t5-mini", "AWS", True, "DL"),
31
- "chronos_small": ("amazon/chronos-t5-small", "AWS", True, "DL"),
32
- "chronos_base": ("amazon/chronos-t5-base", "AWS", True, "DL"),
33
- "chronos_large": ("amazon/chronos-t5-large", "AWS", True, "DL"),
34
- "chronos_bolt_tiny": ("amazon/chronos-bolt-tiny", "AWS", True, "DL"),
35
- "chronos_bolt_mini": ("amazon/chronos-bolt-mini", "AWS", True, "DL"),
36
- "chronos_bolt_small": ("amazon/chronos-bolt-small", "AWS", True, "DL"),
37
- "chronos_bolt_base": ("amazon/chronos-bolt-base", "AWS", True, "DL"),
38
- "chronos-bolt": ("amazon/chronos-bolt-base", "AWS", True, "DL"),
39
- "chronos-2": ("amazon/chronos-2", "AWS", True, "DL"),
40
- # Moirai Models
41
- "moirai_large": ("Salesforce/moirai-1.1-R-large", "Salesforce", True, "DL"),
42
- "moirai_base": ("Salesforce/moirai-1.1-R-base", "Salesforce", True, "DL"),
43
- "moirai_small": ("Salesforce/moirai-1.1-R-small", "Salesforce", True, "DL"),
44
- "moirai-2.0": ("Salesforce/moirai-2.0-R-small", "Salesforce", True, "DL"),
45
- # TimesFM Models
46
- "timesfm": ("google/timesfm-1.0-200m-pytorch", "Google", True, "DL"),
47
- "timesfm-2.0": ("google/timesfm-2.0-500m-pytorch", "Google", True, "DL"),
48
- "timesfm-2.5": ("google/timesfm-2.5-200m-pytorch", "Google", True, "DL"),
49
- # Toto Models
50
- "toto-1.0": ("Datadog/Toto-Open-Base-1.0", "Datadog", True, "DL"),
51
- # Other Models
52
- "tirex": ("NX-AI/TiRex", "NX-AI", True, "DL"),
53
- "tabpfn-ts": ("Prior-Labs/TabPFN-v2-reg", "Prior Labs", True, "DL"),
54
- "sundial-base": ("thuml/sundial-base-128m", "Tsinghua University", True, "DL"),
55
- "ttm-r2": ("ibm-granite/granite-timeseries-ttm-r2", "IBM", True, "DL"),
56
- # Task-specific models
57
- "stat. ensemble": (
58
- "https://nixtlaverse.nixtla.io/statsforecast/",
59
- "—",
60
- False,
61
- "ST",
62
- ),
63
- "autoarima": ("https://nixtlaverse.nixtla.io/statsforecast/", "—", False, "ST"),
64
- "autotheta": ("https://nixtlaverse.nixtla.io/statsforecast/", "—", False, "ST"),
65
- "autoets": ("https://nixtlaverse.nixtla.io/statsforecast/", "—", False, "ST"),
66
- "seasonalnaive": ("https://nixtlaverse.nixtla.io/statsforecast/", "—", False, "ST"),
67
- "seasonal naive": (
68
- "https://nixtlaverse.nixtla.io/statsforecast/",
69
- "—",
70
- False,
71
- "ST",
72
- ),
73
- "drift": ("https://nixtlaverse.nixtla.io/statsforecast/", "—", False, "ST"),
74
- "naive": ("https://nixtlaverse.nixtla.io/statsforecast/", "—", False, "ST"),
75
- }
76
-
77
-
78
- ALL_METRICS = {
79
- "SQL": (
80
- "SQL: Scaled Quantile Loss",
81
- "The [Scaled Quantile Loss (SQL)](https://auto.gluon.ai/dev/tutorials/timeseries/forecasting-metrics.html#autogluon.timeseries.metrics.SQL) is a **scale-invariant** metric for evaluating **probabilistic** forecasts.",
82
- ),
83
- "MASE": (
84
- "MASE: Mean Absolute Scaled Error",
85
- "The [Mean Absolute Scaled Error (MASE)](https://auto.gluon.ai/dev/tutorials/timeseries/forecasting-metrics.html#autogluon.timeseries.metrics.MASE) is a **scale-invariant** metric for evaluating **point** forecasts.",
86
- ),
87
- "WQL": (
88
- "WQL: Weighted Quantile Loss",
89
- "The [Weighted Quantile Loss (WQL)](https://auto.gluon.ai/dev/tutorials/timeseries/forecasting-metrics.html#autogluon.timeseries.metrics.WQL), is a **scale-dependent** metric for evaluating **probabilistic** forecasts.",
90
- ),
91
- "WAPE": (
92
- "WAPE: Weighted Absolute Percentage Error",
93
- "The [Weighted Absolute Percentage Error (WAPE)](https://auto.gluon.ai/dev/tutorials/timeseries/forecasting-metrics.html#autogluon.timeseries.metrics.WAPE) is a **scale-dependent** metric for evaluating **point** forecasts.",
94
- ),
95
- }
96
-
97
-
98
- def format_metric_name(metric_name: str):
99
- return ALL_METRICS[metric_name][0]
100
-
101
-
102
- def get_metric_description(metric_name: str):
103
- return ALL_METRICS[metric_name][1]
104
-
105
-
106
- def get_model_link(model_name):
107
- config = MODEL_CONFIG.get(model_name.lower())
108
- if not config or not config[0]:
109
- return ""
110
- url = config[0]
111
- return url if url.startswith("https:") else f"https://huggingface.co/{url}"
112
-
113
-
114
- def get_model_organization(model_name):
115
- config = MODEL_CONFIG.get(model_name.lower())
116
- return config[1] if config else "—"
117
-
118
-
119
- def get_zero_shot_status(model_name):
120
- config = MODEL_CONFIG.get(model_name.lower())
121
- return "✓" if config and config[2] else "×"
122
-
123
-
124
- def get_model_type(model_name):
125
- config = MODEL_CONFIG.get(model_name.lower())
126
- return config[3] if config else "—"
127
-
128
-
129
- def highlight_model_type_color(cell):
130
- config = MODEL_CONFIG.get(cell.lower())
131
- if config:
132
- color = COLORS["dl_text"] if config[3] == "DL" else COLORS["st_text"]
133
- return f"font-weight: bold; color: {color}"
134
- return "font-weight: bold"
135
-
136
-
137
- def format_leaderboard(df: pd.DataFrame):
138
- df = df.copy()
139
- df["skill_score"] = df["skill_score"].round(1)
140
- df["win_rate"] = df["win_rate"].round(1)
141
- df["zero_shot"] = df["model_name"].apply(get_zero_shot_status)
142
- # Format leakage column: convert to int for all models, 0 for non-zero-shot
143
- df["training_corpus_overlap"] = df.apply(
144
- lambda row: int(round(row["training_corpus_overlap"] * 100)) if row["zero_shot"] == "✓" else 0,
145
- axis=1,
146
- )
147
- df["link"] = df["model_name"].apply(get_model_link)
148
- df["org"] = df["model_name"].apply(get_model_organization)
149
- df = df[
150
- [
151
- "model_name",
152
- "win_rate",
153
- "skill_score",
154
- "median_inference_time_s",
155
- "training_corpus_overlap",
156
- "num_failures",
157
- "zero_shot",
158
- "org",
159
- "link",
160
- ]
161
- ]
162
- return (
163
- df.style.map(highlight_model_type_color, subset=["model_name"])
164
- .map(lambda x: "font-weight: bold", subset=["zero_shot"])
165
- .apply(
166
- lambda x: ["background-color: #f8f9fa" if i % 2 == 1 else "" for i in range(len(x))],
167
- axis=0,
168
- )
169
- )
170
-
171
-
172
- def construct_bar_chart(df: pd.DataFrame, col: str, metric_name: str):
173
- label = "Skill Score" if col == "skill_score" else "Win Rate"
174
-
175
- tooltip = [
176
- alt.Tooltip("model_name:N"),
177
- alt.Tooltip(f"{col}:Q", format=".2f"),
178
- alt.Tooltip(f"{col}_lower:Q", title="95% CI Lower", format=".2f"),
179
- alt.Tooltip(f"{col}_upper:Q", title="95% CI Upper", format=".2f"),
180
- ]
181
-
182
- base_encode = {
183
- "y": alt.Y("model_name:N", title="Forecasting Model", sort=None),
184
- "tooltip": tooltip,
185
- }
186
-
187
- bars = (
188
- alt.Chart(df)
189
- .mark_bar(color=COLORS["bar_fill"], cornerRadius=4)
190
- .encode(
191
- x=alt.X(f"{col}:Q", title=f"{label} (%)", scale=alt.Scale(zero=False)),
192
- **base_encode,
193
- )
194
- )
195
-
196
- error_bars = (
197
- alt.Chart(df)
198
- .mark_errorbar(ticks={"height": 5}, color=COLORS["error_bar"])
199
- .encode(
200
- y=alt.Y("model_name:N", title=None, sort=None),
201
- x=alt.X(f"{col}_lower:Q", title=f"{label} (%)"),
202
- x2=alt.X2(f"{col}_upper:Q"),
203
- tooltip=tooltip,
204
- )
205
- )
206
-
207
- points = (
208
- alt.Chart(df)
209
- .mark_point(filled=True, color=COLORS["point"])
210
- .encode(x=alt.X(f"{col}:Q", title=f"{label} (%)"), **base_encode)
211
- )
212
-
213
- return (
214
- (bars + error_bars + points)
215
- .properties(height=500, title=f"{label} ({metric_name}) with 95% CIs")
216
- .configure_title(fontSize=16)
217
- )
218
-
219
-
220
- def construct_pairwise_chart(df: pd.DataFrame, col: str, metric_name: str):
221
- config = {
222
- "win_rate": ("Win Rate", [0, 100], 50, f"abs(datum.{col} - 50) > 30"),
223
- "skill_score": ("Skill Score", [-15, 15], 0, f"abs(datum.{col}) > 10"),
224
- }
225
- cbar_label, domain, domain_mid, text_condition = config[col]
226
-
227
- df = df.copy()
228
- for c in [col, f"{col}_lower", f"{col}_upper"]:
229
- df[c] *= 100
230
-
231
- model_order = df.groupby("model_1")[col].mean().sort_values(ascending=False).index.tolist()
232
-
233
- tooltip = [
234
- alt.Tooltip("model_1:N", title="Model 1"),
235
- alt.Tooltip("model_2:N", title="Model 2"),
236
- alt.Tooltip(f"{col}:Q", title=cbar_label.split(" ")[0], format=".1f"),
237
- alt.Tooltip(f"{col}_lower:Q", title="95% CI Lower", format=".1f"),
238
- alt.Tooltip(f"{col}_upper:Q", title="95% CI Upper", format=".1f"),
239
- ]
240
-
241
- base = alt.Chart(df).encode(
242
- x=alt.X(
243
- "model_2:N",
244
- sort=model_order,
245
- title="Model 2",
246
- axis=alt.Axis(orient="top", labelAngle=-90),
247
- ),
248
- y=alt.Y("model_1:N", sort=model_order, title="Model 1"),
249
- )
250
-
251
- heatmap = base.mark_rect().encode(
252
- color=alt.Color(
253
- f"{col}:Q",
254
- legend=None,
255
- scale=alt.Scale(
256
- scheme=HEATMAP_COLOR_SCHEME,
257
- domain=domain,
258
- domainMid=domain_mid,
259
- clamp=True,
260
- ),
261
- ),
262
- tooltip=tooltip,
263
- )
264
-
265
- text_main = base.mark_text(dy=-8, fontSize=8, baseline="top", yOffset=5).encode(
266
- text=alt.Text(f"{col}:Q", format=".1f"),
267
- color=alt.condition(
268
- text_condition,
269
- alt.value(COLORS["text_white"]),
270
- alt.value(COLORS["text_black"]),
271
- ),
272
- tooltip=tooltip,
273
- )
274
-
275
- return (
276
- (heatmap + text_main)
277
- .properties(
278
- height=550,
279
- title={
280
- "text": f"Pairwise {cbar_label} ({metric_name}) with 95% CIs",
281
- "fontSize": 16,
282
- },
283
- )
284
- .configure_axis(labelFontSize=11, titleFontSize=13, titleFontWeight="bold")
285
- .resolve_scale(color="independent")
286
- )
287
-
288
-
289
- def construct_pivot_table_from_df(errors: pd.DataFrame, metric_name: str) -> pd.io.formats.style.Styler:
290
- """Construct styled pivot table from precomputed DataFrame."""
291
-
292
- def highlight_by_position(styler):
293
- rank_colors = {1: COLORS["gold"], 2: COLORS["silver"], 3: COLORS["bronze"]}
294
-
295
- for row_idx in errors.index:
296
- row_ranks = errors.loc[row_idx].rank(method="min")
297
- for col_idx in errors.columns:
298
- rank = row_ranks[col_idx]
299
- style_parts = []
300
-
301
- # Rank background colors
302
- if rank <= 3:
303
- style_parts.append(f"background-color: {rank_colors[rank]}")
304
- else:
305
- style_parts.append(f"color: {COLORS['text_default']}")
306
-
307
- if style_parts:
308
- styler = styler.map(
309
- lambda x, s="; ".join(style_parts): s,
310
- subset=pd.IndexSlice[row_idx:row_idx, col_idx:col_idx],
311
- )
312
- return styler
313
-
314
- return highlight_by_position(errors.style).format(precision=3)
315
-
316
-
317
- def construct_pivot_table(
318
- summaries: pd.DataFrame,
319
- metric_name: str,
320
- baseline_model: str,
321
- leakage_imputation_model: str,
322
- ) -> pd.io.formats.style.Styler:
323
- errors = fev.pivot_table(summaries=summaries, metric_column=metric_name, task_columns=["task_name"])
324
- train_overlap = (
325
- fev.pivot_table(
326
- summaries=summaries,
327
- metric_column="trained_on_this_dataset",
328
- task_columns=["task_name"],
329
- )
330
- .fillna(False)
331
- .astype(bool)
332
- )
333
-
334
- is_imputed_baseline = errors.isna()
335
- is_leakage_imputed = train_overlap
336
-
337
- # Handle imputations
338
- errors = errors.mask(train_overlap, errors[leakage_imputation_model], axis=0)
339
- for col in errors.columns:
340
- if col != baseline_model:
341
- errors[col] = errors[col].fillna(errors[baseline_model])
342
-
343
- errors = errors[errors.rank(axis=1).mean().sort_values().index]
344
- errors.index.rename("Task name", inplace=True)
345
-
346
- def highlight_by_position(styler):
347
- rank_colors = {1: COLORS["gold"], 2: COLORS["silver"], 3: COLORS["bronze"]}
348
-
349
- for row_idx in errors.index:
350
- row_ranks = errors.loc[row_idx].rank(method="min")
351
- for col_idx in errors.columns:
352
- rank = row_ranks[col_idx]
353
- style_parts = []
354
-
355
- # Rank background colors
356
- if rank <= 3:
357
- style_parts.append(f"background-color: {rank_colors[rank]}")
358
-
359
- # Imputation text colors
360
- if is_leakage_imputed.loc[row_idx, col_idx]:
361
- style_parts.append(f"color: {COLORS['leakage_impute']}")
362
- elif is_imputed_baseline.loc[row_idx, col_idx]:
363
- style_parts.append(f"color: {COLORS['failure_impute']}")
364
- elif not style_parts or (len(style_parts) == 1 and "font-weight" in style_parts[0]):
365
- style_parts.append(f"color: {COLORS['text_default']}")
366
-
367
- if style_parts:
368
- styler = styler.map(
369
- lambda x, s="; ".join(style_parts): s,
370
- subset=pd.IndexSlice[row_idx:row_idx, col_idx:col_idx],
371
- )
372
- return styler
373
-
374
- return highlight_by_position(errors.style).format(precision=3)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
tables/leaderboard_MASE.csv DELETED
@@ -1,16 +0,0 @@
1
- model_name,win_rate,skill_score,median_training_time_s,median_inference_time_s,training_corpus_overlap,num_failures
2
- Chronos-2,88.07142857142857,35.495567419618524,0.0,3.56996066,0.0,0.0
3
- TiRex,76.89285714285712,30.012261671412087,0.0,1.4030189444999999,0.01,0.0
4
- TimesFM-2.5,75.07142857142857,30.197590695974842,0.0,16.9308283315,0.1,0.0
5
- Toto-1.0,66.85714285714285,28.213885409107164,0.0,90.676829282,0.08,0.0
6
- Moirai-2.0,61.21428571428572,27.25905867510979,0.0,2.5351729785000003,0.28,0.0
7
- Chronos-Bolt,60.785714285714285,26.51514785224567,0.0,0.9960156920000001,0.0,0.0
8
- TabPFN-TS,58.67857142857142,27.649834806479856,0.0,305.466367349,0.0,2.0
9
- Sundial-Base,53.39285714285714,24.746214191232585,0.0,35.620029862500004,0.01,0.0
10
- Stat. Ensemble,48.535714285714285,15.654207763455553,0.0,690.615290623,0.0,11.0
11
- AutoARIMA,36.67857142857143,11.239602667684679,0.0,186.7699845295,0.0,10.0
12
- AutoTheta,34.92857142857142,10.9884701559679,0.0,9.267665384499999,0.0,0.0
13
- AutoETS,33.25,2.258981670108584,0.0,17.004582018,0.0,3.0
14
- Seasonal Naive,20.96428571428571,0.0,0.0,2.3247850175,0.0,0.0
15
- Naive,19.321428571428573,-16.673948793089565,0.0,2.2371214229999996,0.0,0.0
16
- Drift,15.357142857142856,-18.13920384837251,0.0,2.1929671395000003,0.0,0.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
tables/leaderboard_SQL.csv DELETED
@@ -1,16 +0,0 @@
1
- model_name,win_rate,skill_score,median_training_time_s,median_inference_time_s,training_corpus_overlap,num_failures
2
- Chronos-2,91.42857142857143,47.27916337543932,0.0,3.56996066,0.0,0.0
3
- TiRex,82.67857142857142,42.57610775202675,0.0,1.4030189444999999,0.01,0.0
4
- TimesFM-2.5,77.57142857142858,42.20062128325953,0.0,16.9308283315,0.1,0.0
5
- Toto-1.0,70.21428571428571,40.7460359139889,0.0,90.676829282,0.08,0.0
6
- Chronos-Bolt,64.42857142857143,38.892961600022936,0.0,0.9960156920000001,0.0,0.0
7
- Moirai-2.0,64.42857142857143,39.332013785815214,0.0,2.5351729785000003,0.28,0.0
8
- TabPFN-TS,62.96428571428573,39.58671179038912,0.0,305.466367349,0.0,2.0
9
- Sundial-Base,45.964285714285715,33.42287717226134,0.0,35.620029862500004,0.01,0.0
10
- Stat. Ensemble,45.53571428571429,20.161731427800046,0.0,690.615290623,0.0,11.0
11
- AutoARIMA,40.67857142857143,20.561948549632326,0.0,186.7699845295,0.0,10.0
12
- AutoETS,33.67857142857143,-26.818526760288375,0.0,17.004582018,0.0,3.0
13
- AutoTheta,27.142857142857142,5.457380397818312,0.0,9.267665384499999,0.0,0.0
14
- Seasonal Naive,20.178571428571423,0.0,0.0,2.3247850175,0.0,0.0
15
- Naive,13.821428571428573,-45.398988807164976,0.0,2.2371214229999996,0.0,0.0
16
- Drift,9.285714285714286,-45.77585379444895,0.0,2.1929671395000003,0.0,0.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
tables/leaderboard_WAPE.csv DELETED
@@ -1,16 +0,0 @@
1
- model_name,win_rate,skill_score,median_training_time_s,median_inference_time_s,training_corpus_overlap,num_failures
2
- Chronos-2,85.92857142857142,39.409528419872345,0.0,3.56996066,0.0,0.0
3
- TimesFM-2.5,75.28571428571428,33.719263075740194,0.0,16.9308283315,0.1,0.0
4
- TiRex,75.25000000000001,33.56017122067458,0.0,1.4030189444999999,0.01,0.0
5
- Toto-1.0,67.64285714285717,31.488756179777678,0.0,90.676829282,0.08,0.0
6
- TabPFN-TS,64.32142857142857,33.36123166513091,0.0,305.466367349,0.0,2.0
7
- Moirai-2.0,62.14285714285715,30.651048841637785,0.0,2.5351729785000003,0.28,0.0
8
- Chronos-Bolt,61.142857142857146,29.770064235526473,0.0,0.9960156920000001,0.0,0.0
9
- Sundial-Base,51.24999999999999,27.263435775595426,0.0,35.620029862500004,0.01,0.0
10
- Stat. Ensemble,47.32142857142856,17.693885547849597,0.0,690.615290623,0.0,11.0
11
- AutoARIMA,34.96428571428571,13.271687847205381,0.0,186.7699845295,0.0,10.0
12
- AutoETS,34.60714285714286,4.328689341465408,0.0,17.004582018,0.0,3.0
13
- AutoTheta,32.0,13.794755020224814,0.0,9.267665384499999,0.0,0.0
14
- Naive,22.749999999999996,-6.11148881462471,0.0,2.2371214229999996,0.0,0.0
15
- Seasonal Naive,19.249999999999996,0.0,0.0,2.3247850175,0.0,0.0
16
- Drift,16.142857142857146,-8.604851625817744,0.0,2.1929671395000003,0.0,0.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
tables/leaderboard_WQL.csv DELETED
@@ -1,16 +0,0 @@
1
- model_name,win_rate,skill_score,median_training_time_s,median_inference_time_s,training_corpus_overlap,num_failures
2
- Chronos-2,89.14285714285714,51.51837694099346,0.0,3.56996066,0.0,0.0
3
- TiRex,80.60714285714286,46.66550397812589,0.0,1.4030189444999999,0.01,0.0
4
- TimesFM-2.5,78.28571428571429,46.72558173490076,0.0,16.9308283315,0.1,0.0
5
- Toto-1.0,70.85714285714285,45.00088243993733,0.0,90.676829282,0.08,0.0
6
- TabPFN-TS,68.10714285714286,45.822378843833036,0.0,305.466367349,0.0,2.0
7
- Moirai-2.0,66.21428571428571,43.864523387242194,0.0,2.5351729785000003,0.28,0.0
8
- Chronos-Bolt,64.85714285714286,43.187343947848866,0.0,0.9960156920000001,0.0,0.0
9
- Sundial-Base,47.035714285714285,37.43731640370259,0.0,35.620029862500004,0.01,0.0
10
- Stat. Ensemble,44.17857142857143,21.795752415252334,0.0,690.615290623,0.0,11.0
11
- AutoARIMA,40.10714285714287,23.401617100945593,0.0,186.7699845295,0.0,10.0
12
- AutoETS,31.392857142857146,-27.026777935471568,0.0,17.004582018,0.0,3.0
13
- AutoTheta,26.714285714285708,7.846425960422055,0.0,9.267665384499999,0.0,0.0
14
- Seasonal Naive,19.464285714285708,0.0,0.0,2.3247850175,0.0,0.0
15
- Naive,13.750000000000002,-39.121433468308894,0.0,2.2371214229999996,0.0,0.0
16
- Drift,9.285714285714288,-40.05851008470427,0.0,2.1929671395000003,0.0,0.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
tables/pairwise_MASE.csv DELETED
@@ -1,226 +0,0 @@
1
- model_1,model_2,win_rate,win_rate_lower,win_rate_upper,skill_score,skill_score_lower,skill_score_upper
2
- Chronos-2,Chronos-2,0.5,0.5,0.5,0.0,0.0,0.0
3
- Chronos-2,TiRex,0.72,0.63,0.81,0.078,0.052,0.108
4
- Chronos-2,TimesFM-2.5,0.71,0.62,0.79,0.076,0.048,0.103
5
- Chronos-2,Toto-1.0,0.74,0.65,0.83,0.101,0.073,0.133
6
- Chronos-2,Moirai-2.0,0.92,0.86,0.97,0.113,0.086,0.141
7
- Chronos-2,Chronos-Bolt,0.94,0.89,0.98,0.122,0.096,0.15
8
- Chronos-2,TabPFN-TS,0.85,0.77,0.92,0.108,0.08,0.14
9
- Chronos-2,Sundial-Base,0.91,0.85,0.96,0.143,0.113,0.172
10
- Chronos-2,Stat. Ensemble,0.86,0.79,0.93,0.235,0.19,0.277
11
- Chronos-2,AutoARIMA,0.95,0.9,0.99,0.273,0.23,0.315
12
- Chronos-2,AutoTheta,0.94,0.89,0.98,0.275,0.236,0.316
13
- Chronos-2,AutoETS,0.89,0.83,0.95,0.34,0.28,0.401
14
- Chronos-2,Seasonal Naive,0.98,0.95,1.0,0.355,0.318,0.393
15
- Chronos-2,Naive,0.98,0.95,1.0,0.447,0.388,0.505
16
- Chronos-2,Drift,0.94,0.89,0.98,0.454,0.392,0.513
17
- TiRex,Chronos-2,0.28,0.19,0.37,-0.085,-0.121,-0.055
18
- TiRex,TiRex,0.5,0.5,0.5,0.0,0.0,0.0
19
- TiRex,TimesFM-2.5,0.485,0.385,0.585,-0.003,-0.019,0.014
20
- TiRex,Toto-1.0,0.615,0.52,0.71,0.025,0.003,0.046
21
- TiRex,Moirai-2.0,0.765,0.685,0.845,0.038,0.021,0.055
22
- TiRex,Chronos-Bolt,0.765,0.68,0.845,0.048,0.029,0.067
23
- TiRex,TabPFN-TS,0.69,0.6,0.78,0.033,-0.01,0.074
24
- TiRex,Sundial-Base,0.805,0.72,0.88,0.07,0.036,0.104
25
- TiRex,Stat. Ensemble,0.81,0.73,0.89,0.17,0.132,0.21
26
- TiRex,AutoARIMA,0.9,0.84,0.95,0.211,0.175,0.253
27
- TiRex,AutoTheta,0.94,0.89,0.98,0.214,0.18,0.249
28
- TiRex,AutoETS,0.84,0.77,0.91,0.284,0.225,0.345
29
- TiRex,Seasonal Naive,0.97,0.94,1.0,0.3,0.264,0.339
30
- TiRex,Naive,0.96,0.92,0.99,0.4,0.344,0.457
31
- TiRex,Drift,0.94,0.89,0.98,0.408,0.347,0.462
32
- TimesFM-2.5,Chronos-2,0.29,0.21,0.38,-0.082,-0.115,-0.05
33
- TimesFM-2.5,TiRex,0.515,0.415,0.615,0.003,-0.014,0.019
34
- TimesFM-2.5,TimesFM-2.5,0.5,0.5,0.5,0.0,0.0,0.0
35
- TimesFM-2.5,Toto-1.0,0.57,0.485,0.66,0.028,0.005,0.051
36
- TimesFM-2.5,Moirai-2.0,0.71,0.625,0.795,0.04,0.021,0.06
37
- TimesFM-2.5,Chronos-Bolt,0.71,0.625,0.79,0.05,0.029,0.071
38
- TimesFM-2.5,TabPFN-TS,0.67,0.58,0.77,0.035,-0.011,0.081
39
- TimesFM-2.5,Sundial-Base,0.805,0.73,0.88,0.072,0.04,0.105
40
- TimesFM-2.5,Stat. Ensemble,0.79,0.71,0.87,0.172,0.126,0.217
41
- TimesFM-2.5,AutoARIMA,0.87,0.8,0.93,0.214,0.175,0.257
42
- TimesFM-2.5,AutoTheta,0.9,0.83,0.95,0.216,0.177,0.255
43
- TimesFM-2.5,AutoETS,0.84,0.76,0.91,0.286,0.228,0.347
44
- TimesFM-2.5,Seasonal Naive,0.96,0.92,0.99,0.302,0.267,0.342
45
- TimesFM-2.5,Naive,0.96,0.92,0.99,0.402,0.341,0.458
46
- TimesFM-2.5,Drift,0.92,0.86,0.97,0.409,0.345,0.469
47
- Toto-1.0,Chronos-2,0.26,0.17,0.35,-0.113,-0.154,-0.079
48
- Toto-1.0,TiRex,0.385,0.29,0.48,-0.026,-0.048,-0.003
49
- Toto-1.0,TimesFM-2.5,0.43,0.34,0.515,-0.028,-0.054,-0.005
50
- Toto-1.0,Toto-1.0,0.5,0.5,0.5,0.0,0.0,0.0
51
- Toto-1.0,Moirai-2.0,0.58,0.49,0.67,0.013,-0.008,0.034
52
- Toto-1.0,Chronos-Bolt,0.56,0.46,0.645,0.023,-0.005,0.048
53
- Toto-1.0,TabPFN-TS,0.58,0.49,0.67,0.008,-0.043,0.055
54
- Toto-1.0,Sundial-Base,0.675,0.585,0.765,0.046,0.007,0.088
55
- Toto-1.0,Stat. Ensemble,0.73,0.64,0.81,0.149,0.102,0.193
56
- Toto-1.0,AutoARIMA,0.81,0.73,0.88,0.191,0.149,0.237
57
- Toto-1.0,AutoTheta,0.82,0.74,0.89,0.194,0.151,0.235
58
- Toto-1.0,AutoETS,0.79,0.71,0.86,0.266,0.203,0.326
59
- Toto-1.0,Seasonal Naive,0.91,0.85,0.96,0.282,0.241,0.327
60
- Toto-1.0,Naive,0.94,0.88,0.98,0.385,0.32,0.442
61
- Toto-1.0,Drift,0.89,0.82,0.94,0.392,0.328,0.451
62
- Moirai-2.0,Chronos-2,0.08,0.03,0.14,-0.128,-0.164,-0.094
63
- Moirai-2.0,TiRex,0.235,0.155,0.315,-0.039,-0.059,-0.021
64
- Moirai-2.0,TimesFM-2.5,0.29,0.205,0.375,-0.042,-0.064,-0.022
65
- Moirai-2.0,Toto-1.0,0.42,0.33,0.51,-0.013,-0.036,0.008
66
- Moirai-2.0,Moirai-2.0,0.5,0.5,0.5,0.0,0.0,0.0
67
- Moirai-2.0,Chronos-Bolt,0.55,0.465,0.64,0.01,-0.012,0.032
68
- Moirai-2.0,TabPFN-TS,0.52,0.43,0.62,-0.005,-0.054,0.038
69
- Moirai-2.0,Sundial-Base,0.685,0.595,0.775,0.033,-0.004,0.067
70
- Moirai-2.0,Stat. Ensemble,0.73,0.64,0.82,0.138,0.09,0.18
71
- Moirai-2.0,AutoARIMA,0.81,0.73,0.88,0.18,0.138,0.228
72
- Moirai-2.0,AutoTheta,0.85,0.77,0.91,0.183,0.144,0.223
73
- Moirai-2.0,AutoETS,0.76,0.67,0.83,0.256,0.192,0.32
74
- Moirai-2.0,Seasonal Naive,0.87,0.8,0.93,0.273,0.236,0.314
75
- Moirai-2.0,Naive,0.91,0.85,0.96,0.377,0.316,0.433
76
- Moirai-2.0,Drift,0.86,0.79,0.92,0.384,0.32,0.441
77
- Chronos-Bolt,Chronos-2,0.06,0.02,0.11,-0.139,-0.177,-0.106
78
- Chronos-Bolt,TiRex,0.235,0.155,0.32,-0.05,-0.072,-0.03
79
- Chronos-Bolt,TimesFM-2.5,0.29,0.21,0.375,-0.053,-0.077,-0.03
80
- Chronos-Bolt,Toto-1.0,0.44,0.355,0.54,-0.024,-0.051,0.005
81
- Chronos-Bolt,Moirai-2.0,0.45,0.36,0.535,-0.01,-0.033,0.012
82
- Chronos-Bolt,Chronos-Bolt,0.5,0.5,0.5,0.0,0.0,0.0
83
- Chronos-Bolt,TabPFN-TS,0.52,0.42,0.61,-0.016,-0.062,0.025
84
- Chronos-Bolt,Sundial-Base,0.605,0.51,0.695,0.024,-0.014,0.057
85
- Chronos-Bolt,Stat. Ensemble,0.7,0.61,0.79,0.129,0.084,0.174
86
- Chronos-Bolt,AutoARIMA,0.84,0.76,0.9,0.172,0.132,0.215
87
- Chronos-Bolt,AutoTheta,0.86,0.79,0.92,0.174,0.137,0.212
88
- Chronos-Bolt,AutoETS,0.77,0.68,0.85,0.248,0.184,0.315
89
- Chronos-Bolt,Seasonal Naive,0.9,0.84,0.95,0.265,0.226,0.304
90
- Chronos-Bolt,Naive,0.94,0.89,0.98,0.37,0.315,0.423
91
- Chronos-Bolt,Drift,0.9,0.83,0.95,0.378,0.319,0.435
92
- TabPFN-TS,Chronos-2,0.15,0.08,0.23,-0.122,-0.163,-0.087
93
- TabPFN-TS,TiRex,0.31,0.22,0.4,-0.034,-0.08,0.01
94
- TabPFN-TS,TimesFM-2.5,0.33,0.23,0.42,-0.036,-0.088,0.011
95
- TabPFN-TS,Toto-1.0,0.42,0.33,0.51,-0.008,-0.058,0.041
96
- TabPFN-TS,Moirai-2.0,0.48,0.38,0.57,0.005,-0.039,0.051
97
- TabPFN-TS,Chronos-Bolt,0.48,0.39,0.58,0.015,-0.026,0.058
98
- TabPFN-TS,TabPFN-TS,0.5,0.5,0.5,0.0,0.0,0.0
99
- TabPFN-TS,Sundial-Base,0.53,0.43,0.63,0.039,-0.001,0.078
100
- TabPFN-TS,Stat. Ensemble,0.645,0.545,0.735,0.142,0.089,0.19
101
- TabPFN-TS,AutoARIMA,0.75,0.67,0.83,0.185,0.133,0.241
102
- TabPFN-TS,AutoTheta,0.75,0.66,0.83,0.187,0.14,0.235
103
- TabPFN-TS,AutoETS,0.72,0.63,0.81,0.26,0.183,0.332
104
- TabPFN-TS,Seasonal Naive,0.91,0.855,0.96,0.276,0.231,0.321
105
- TabPFN-TS,Naive,0.87,0.8,0.93,0.38,0.318,0.442
106
- TabPFN-TS,Drift,0.87,0.8,0.94,0.388,0.321,0.45
107
- Sundial-Base,Chronos-2,0.09,0.04,0.15,-0.167,-0.207,-0.128
108
- Sundial-Base,TiRex,0.195,0.12,0.28,-0.075,-0.115,-0.037
109
- Sundial-Base,TimesFM-2.5,0.195,0.12,0.27,-0.078,-0.117,-0.042
110
- Sundial-Base,Toto-1.0,0.325,0.235,0.415,-0.048,-0.097,-0.007
111
- Sundial-Base,Moirai-2.0,0.315,0.225,0.405,-0.035,-0.072,0.004
112
- Sundial-Base,Chronos-Bolt,0.395,0.305,0.49,-0.024,-0.061,0.014
113
- Sundial-Base,TabPFN-TS,0.47,0.37,0.57,-0.04,-0.085,0.001
114
- Sundial-Base,Sundial-Base,0.5,0.5,0.5,0.0,0.0,0.0
115
- Sundial-Base,Stat. Ensemble,0.66,0.56,0.76,0.108,0.051,0.16
116
- Sundial-Base,AutoARIMA,0.76,0.67,0.84,0.152,0.098,0.203
117
- Sundial-Base,AutoTheta,0.77,0.68,0.85,0.155,0.109,0.199
118
- Sundial-Base,AutoETS,0.71,0.61,0.8,0.23,0.152,0.3
119
- Sundial-Base,Seasonal Naive,0.88,0.81,0.94,0.247,0.206,0.288
120
- Sundial-Base,Naive,0.88,0.8,0.94,0.355,0.289,0.417
121
- Sundial-Base,Drift,0.83,0.75,0.9,0.363,0.291,0.428
122
- Stat. Ensemble,Chronos-2,0.14,0.07,0.21,-0.308,-0.383,-0.234
123
- Stat. Ensemble,TiRex,0.19,0.11,0.27,-0.205,-0.265,-0.152
124
- Stat. Ensemble,TimesFM-2.5,0.21,0.13,0.29,-0.208,-0.277,-0.144
125
- Stat. Ensemble,Toto-1.0,0.27,0.19,0.36,-0.175,-0.239,-0.113
126
- Stat. Ensemble,Moirai-2.0,0.27,0.18,0.36,-0.16,-0.219,-0.099
127
- Stat. Ensemble,Chronos-Bolt,0.3,0.21,0.39,-0.148,-0.211,-0.091
128
- Stat. Ensemble,TabPFN-TS,0.355,0.265,0.455,-0.166,-0.235,-0.097
129
- Stat. Ensemble,Sundial-Base,0.34,0.24,0.44,-0.121,-0.19,-0.054
130
- Stat. Ensemble,Stat. Ensemble,0.5,0.5,0.5,0.0,0.0,0.0
131
- Stat. Ensemble,AutoARIMA,0.64,0.545,0.73,0.05,0.02,0.09
132
- Stat. Ensemble,AutoTheta,0.75,0.67,0.83,0.052,0.025,0.082
133
- Stat. Ensemble,AutoETS,0.795,0.72,0.87,0.137,0.081,0.194
134
- Stat. Ensemble,Seasonal Naive,0.795,0.725,0.865,0.157,0.116,0.203
135
- Stat. Ensemble,Naive,0.85,0.78,0.92,0.277,0.218,0.346
136
- Stat. Ensemble,Drift,0.89,0.82,0.95,0.286,0.225,0.35
137
- AutoARIMA,Chronos-2,0.05,0.01,0.1,-0.376,-0.459,-0.298
138
- AutoARIMA,TiRex,0.1,0.05,0.16,-0.268,-0.339,-0.212
139
- AutoARIMA,TimesFM-2.5,0.13,0.07,0.2,-0.272,-0.346,-0.212
140
- AutoARIMA,Toto-1.0,0.19,0.12,0.27,-0.236,-0.311,-0.175
141
- AutoARIMA,Moirai-2.0,0.19,0.12,0.27,-0.22,-0.295,-0.16
142
- AutoARIMA,Chronos-Bolt,0.16,0.1,0.24,-0.208,-0.274,-0.152
143
- AutoARIMA,TabPFN-TS,0.25,0.17,0.33,-0.227,-0.317,-0.153
144
- AutoARIMA,Sundial-Base,0.24,0.16,0.33,-0.179,-0.254,-0.108
145
- AutoARIMA,Stat. Ensemble,0.36,0.27,0.455,-0.052,-0.099,-0.02
146
- AutoARIMA,AutoARIMA,0.5,0.5,0.5,0.0,0.0,0.0
147
- AutoARIMA,AutoTheta,0.55,0.45,0.64,0.003,-0.039,0.039
148
- AutoARIMA,AutoETS,0.595,0.5,0.69,0.092,0.024,0.162
149
- AutoARIMA,Seasonal Naive,0.75,0.665,0.83,0.112,0.068,0.161
150
- AutoARIMA,Naive,0.77,0.69,0.85,0.239,0.169,0.312
151
- AutoARIMA,Drift,0.8,0.72,0.87,0.249,0.174,0.324
152
- AutoTheta,Chronos-2,0.06,0.02,0.11,-0.38,-0.462,-0.308
153
- AutoTheta,TiRex,0.06,0.02,0.11,-0.272,-0.332,-0.22
154
- AutoTheta,TimesFM-2.5,0.1,0.05,0.17,-0.275,-0.343,-0.215
155
- AutoTheta,Toto-1.0,0.18,0.11,0.26,-0.24,-0.307,-0.178
156
- AutoTheta,Moirai-2.0,0.15,0.09,0.23,-0.224,-0.287,-0.168
157
- AutoTheta,Chronos-Bolt,0.14,0.08,0.21,-0.211,-0.269,-0.159
158
- AutoTheta,TabPFN-TS,0.25,0.17,0.34,-0.23,-0.307,-0.163
159
- AutoTheta,Sundial-Base,0.23,0.15,0.32,-0.183,-0.249,-0.122
160
- AutoTheta,Stat. Ensemble,0.25,0.17,0.33,-0.055,-0.09,-0.025
161
- AutoTheta,AutoARIMA,0.45,0.36,0.55,-0.003,-0.041,0.037
162
- AutoTheta,AutoTheta,0.5,0.5,0.5,0.0,0.0,0.0
163
- AutoTheta,AutoETS,0.59,0.5,0.69,0.089,0.026,0.155
164
- AutoTheta,Seasonal Naive,0.78,0.7,0.86,0.11,0.069,0.149
165
- AutoTheta,Naive,0.83,0.75,0.9,0.237,0.181,0.301
166
- AutoTheta,Drift,0.82,0.74,0.9,0.247,0.189,0.31
167
- AutoETS,Chronos-2,0.11,0.05,0.17,-0.515,-0.671,-0.39
168
- AutoETS,TiRex,0.16,0.09,0.23,-0.397,-0.526,-0.291
169
- AutoETS,TimesFM-2.5,0.16,0.09,0.24,-0.4,-0.531,-0.295
170
- AutoETS,Toto-1.0,0.21,0.14,0.29,-0.362,-0.484,-0.254
171
- AutoETS,Moirai-2.0,0.24,0.17,0.33,-0.344,-0.471,-0.237
172
- AutoETS,Chronos-Bolt,0.23,0.15,0.32,-0.33,-0.459,-0.225
173
- AutoETS,TabPFN-TS,0.28,0.19,0.37,-0.351,-0.498,-0.225
174
- AutoETS,Sundial-Base,0.29,0.2,0.39,-0.299,-0.428,-0.179
175
- AutoETS,Stat. Ensemble,0.205,0.13,0.28,-0.159,-0.241,-0.088
176
- AutoETS,AutoARIMA,0.405,0.31,0.5,-0.101,-0.194,-0.024
177
- AutoETS,AutoTheta,0.41,0.31,0.5,-0.098,-0.183,-0.027
178
- AutoETS,AutoETS,0.5,0.5,0.5,0.0,0.0,0.0
179
- AutoETS,Seasonal Naive,0.635,0.54,0.72,0.023,-0.071,0.103
180
- AutoETS,Naive,0.64,0.55,0.73,0.162,0.086,0.251
181
- AutoETS,Drift,0.68,0.59,0.77,0.173,0.098,0.258
182
- Seasonal Naive,Chronos-2,0.02,0.0,0.05,-0.55,-0.648,-0.466
183
- Seasonal Naive,TiRex,0.03,0.0,0.06,-0.429,-0.512,-0.359
184
- Seasonal Naive,TimesFM-2.5,0.04,0.01,0.08,-0.433,-0.52,-0.365
185
- Seasonal Naive,Toto-1.0,0.09,0.04,0.15,-0.393,-0.485,-0.318
186
- Seasonal Naive,Moirai-2.0,0.13,0.07,0.2,-0.375,-0.458,-0.308
187
- Seasonal Naive,Chronos-Bolt,0.1,0.05,0.16,-0.361,-0.437,-0.293
188
- Seasonal Naive,TabPFN-TS,0.09,0.04,0.145,-0.382,-0.472,-0.301
189
- Seasonal Naive,Sundial-Base,0.12,0.06,0.19,-0.329,-0.405,-0.259
190
- Seasonal Naive,Stat. Ensemble,0.205,0.135,0.275,-0.186,-0.255,-0.131
191
- Seasonal Naive,AutoARIMA,0.25,0.17,0.335,-0.127,-0.191,-0.073
192
- Seasonal Naive,AutoTheta,0.22,0.14,0.3,-0.123,-0.176,-0.074
193
- Seasonal Naive,AutoETS,0.365,0.28,0.46,-0.023,-0.115,0.067
194
- Seasonal Naive,Seasonal Naive,0.5,0.5,0.5,0.0,0.0,0.0
195
- Seasonal Naive,Naive,0.575,0.48,0.665,0.143,0.065,0.223
196
- Seasonal Naive,Drift,0.7,0.6,0.79,0.154,0.067,0.238
197
- Naive,Chronos-2,0.02,0.0,0.05,-0.809,-1.021,-0.634
198
- Naive,TiRex,0.04,0.01,0.08,-0.667,-0.842,-0.525
199
- Naive,TimesFM-2.5,0.04,0.01,0.08,-0.671,-0.844,-0.518
200
- Naive,Toto-1.0,0.06,0.02,0.12,-0.625,-0.792,-0.471
201
- Naive,Moirai-2.0,0.09,0.04,0.15,-0.604,-0.764,-0.463
202
- Naive,Chronos-Bolt,0.06,0.02,0.11,-0.588,-0.733,-0.46
203
- Naive,TabPFN-TS,0.13,0.07,0.2,-0.613,-0.791,-0.467
204
- Naive,Sundial-Base,0.12,0.06,0.2,-0.55,-0.716,-0.407
205
- Naive,Stat. Ensemble,0.15,0.08,0.22,-0.383,-0.529,-0.279
206
- Naive,AutoARIMA,0.23,0.15,0.31,-0.314,-0.454,-0.204
207
- Naive,AutoTheta,0.17,0.1,0.25,-0.311,-0.432,-0.222
208
- Naive,AutoETS,0.36,0.27,0.45,-0.194,-0.336,-0.094
209
- Naive,Seasonal Naive,0.425,0.335,0.52,-0.167,-0.288,-0.069
210
- Naive,Naive,0.5,0.5,0.5,0.0,0.0,0.0
211
- Naive,Drift,0.81,0.73,0.89,0.012,-0.012,0.035
212
- Drift,Chronos-2,0.06,0.02,0.11,-0.831,-1.053,-0.644
213
- Drift,TiRex,0.06,0.02,0.11,-0.688,-0.859,-0.531
214
- Drift,TimesFM-2.5,0.08,0.03,0.14,-0.692,-0.883,-0.526
215
- Drift,Toto-1.0,0.11,0.06,0.18,-0.646,-0.821,-0.487
216
- Drift,Moirai-2.0,0.14,0.08,0.21,-0.624,-0.789,-0.47
217
- Drift,Chronos-Bolt,0.1,0.05,0.17,-0.608,-0.77,-0.468
218
- Drift,TabPFN-TS,0.13,0.06,0.2,-0.633,-0.819,-0.473
219
- Drift,Sundial-Base,0.17,0.1,0.25,-0.57,-0.747,-0.411
220
- Drift,Stat. Ensemble,0.11,0.05,0.18,-0.401,-0.539,-0.291
221
- Drift,AutoARIMA,0.2,0.13,0.28,-0.331,-0.479,-0.21
222
- Drift,AutoTheta,0.18,0.1,0.26,-0.327,-0.45,-0.233
223
- Drift,AutoETS,0.32,0.23,0.41,-0.209,-0.347,-0.109
224
- Drift,Seasonal Naive,0.3,0.21,0.4,-0.181,-0.312,-0.071
225
- Drift,Naive,0.19,0.11,0.27,-0.013,-0.036,0.012
226
- Drift,Drift,0.5,0.5,0.5,0.0,0.0,0.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
tables/pairwise_SQL.csv DELETED
@@ -1,226 +0,0 @@
1
- model_1,model_2,win_rate,win_rate_lower,win_rate_upper,skill_score,skill_score_lower,skill_score_upper
2
- Chronos-2,Chronos-2,0.5,0.5,0.5,0.0,0.0,0.0
3
- Chronos-2,TiRex,0.72,0.63,0.81,0.082,0.056,0.111
4
- Chronos-2,TimesFM-2.5,0.76,0.67,0.84,0.088,0.059,0.115
5
- Chronos-2,Toto-1.0,0.78,0.69,0.86,0.11,0.081,0.141
6
- Chronos-2,Moirai-2.0,0.93,0.88,0.97,0.131,0.103,0.16
7
- Chronos-2,Chronos-Bolt,0.94,0.89,0.98,0.137,0.11,0.168
8
- Chronos-2,TabPFN-TS,0.88,0.81,0.94,0.127,0.097,0.159
9
- Chronos-2,Sundial-Base,0.96,0.92,0.99,0.208,0.18,0.236
10
- Chronos-2,Stat. Ensemble,0.95,0.9,0.99,0.34,0.288,0.386
11
- Chronos-2,AutoARIMA,0.96,0.92,0.99,0.336,0.29,0.38
12
- Chronos-2,AutoETS,0.94,0.89,0.98,0.562,0.466,0.655
13
- Chronos-2,AutoTheta,0.99,0.97,1.0,0.442,0.387,0.495
14
- Chronos-2,Seasonal Naive,1.0,1.0,1.0,0.473,0.427,0.521
15
- Chronos-2,Naive,1.0,1.0,1.0,0.637,0.583,0.684
16
- Chronos-2,Drift,0.99,0.97,1.0,0.638,0.581,0.687
17
- TiRex,Chronos-2,0.28,0.19,0.37,-0.089,-0.125,-0.06
18
- TiRex,TiRex,0.5,0.5,0.5,0.0,0.0,0.0
19
- TiRex,TimesFM-2.5,0.565,0.465,0.66,0.006,-0.01,0.022
20
- TiRex,Toto-1.0,0.685,0.595,0.775,0.031,0.009,0.052
21
- TiRex,Moirai-2.0,0.825,0.75,0.895,0.053,0.036,0.072
22
- TiRex,Chronos-Bolt,0.835,0.76,0.905,0.06,0.042,0.08
23
- TiRex,TabPFN-TS,0.72,0.63,0.81,0.049,0.005,0.092
24
- TiRex,Sundial-Base,0.905,0.85,0.96,0.137,0.107,0.169
25
- TiRex,Stat. Ensemble,0.92,0.86,0.97,0.281,0.232,0.328
26
- TiRex,AutoARIMA,0.95,0.9,0.99,0.277,0.237,0.32
27
- TiRex,AutoETS,0.92,0.86,0.97,0.524,0.417,0.626
28
- TiRex,AutoTheta,0.99,0.97,1.0,0.393,0.339,0.445
29
- TiRex,Seasonal Naive,1.0,1.0,1.0,0.426,0.379,0.479
30
- TiRex,Naive,0.99,0.97,1.0,0.605,0.547,0.653
31
- TiRex,Drift,0.99,0.97,1.0,0.606,0.545,0.655
32
- TimesFM-2.5,Chronos-2,0.24,0.16,0.33,-0.096,-0.13,-0.062
33
- TimesFM-2.5,TiRex,0.435,0.34,0.535,-0.007,-0.023,0.01
34
- TimesFM-2.5,TimesFM-2.5,0.5,0.5,0.5,0.0,0.0,0.0
35
- TimesFM-2.5,Toto-1.0,0.56,0.47,0.66,0.025,0.001,0.048
36
- TimesFM-2.5,Moirai-2.0,0.74,0.66,0.82,0.047,0.026,0.069
37
- TimesFM-2.5,Chronos-Bolt,0.72,0.635,0.8,0.054,0.033,0.075
38
- TimesFM-2.5,TabPFN-TS,0.7,0.61,0.79,0.043,-0.005,0.087
39
- TimesFM-2.5,Sundial-Base,0.925,0.875,0.97,0.132,0.103,0.161
40
- TimesFM-2.5,Stat. Ensemble,0.84,0.77,0.91,0.276,0.222,0.327
41
- TimesFM-2.5,AutoARIMA,0.92,0.86,0.97,0.272,0.232,0.319
42
- TimesFM-2.5,AutoETS,0.87,0.8,0.93,0.521,0.413,0.624
43
- TimesFM-2.5,AutoTheta,0.96,0.91,0.99,0.389,0.331,0.446
44
- TimesFM-2.5,Seasonal Naive,0.99,0.97,1.0,0.422,0.375,0.474
45
- TimesFM-2.5,Naive,0.99,0.97,1.0,0.602,0.543,0.65
46
- TimesFM-2.5,Drift,0.97,0.93,1.0,0.604,0.542,0.653
47
- Toto-1.0,Chronos-2,0.22,0.14,0.31,-0.124,-0.164,-0.088
48
- Toto-1.0,TiRex,0.315,0.225,0.405,-0.032,-0.054,-0.01
49
- Toto-1.0,TimesFM-2.5,0.44,0.34,0.53,-0.025,-0.051,-0.001
50
- Toto-1.0,Toto-1.0,0.5,0.5,0.5,0.0,0.0,0.0
51
- Toto-1.0,Moirai-2.0,0.6,0.51,0.685,0.023,0.002,0.045
52
- Toto-1.0,Chronos-Bolt,0.57,0.475,0.655,0.03,0.001,0.055
53
- Toto-1.0,TabPFN-TS,0.57,0.48,0.66,0.019,-0.033,0.07
54
- Toto-1.0,Sundial-Base,0.825,0.745,0.895,0.11,0.074,0.147
55
- Toto-1.0,Stat. Ensemble,0.8,0.72,0.87,0.258,0.2,0.309
56
- Toto-1.0,AutoARIMA,0.86,0.79,0.92,0.254,0.207,0.305
57
- Toto-1.0,AutoETS,0.83,0.75,0.9,0.51,0.402,0.614
58
- Toto-1.0,AutoTheta,0.9,0.83,0.95,0.373,0.31,0.431
59
- Toto-1.0,Seasonal Naive,0.96,0.92,0.99,0.407,0.354,0.465
60
- Toto-1.0,Naive,0.98,0.95,1.0,0.592,0.532,0.642
61
- Toto-1.0,Drift,0.96,0.92,0.99,0.594,0.53,0.645
62
- Moirai-2.0,Chronos-2,0.07,0.03,0.12,-0.151,-0.19,-0.115
63
- Moirai-2.0,TiRex,0.175,0.105,0.25,-0.056,-0.077,-0.038
64
- Moirai-2.0,TimesFM-2.5,0.26,0.18,0.34,-0.05,-0.074,-0.027
65
- Moirai-2.0,Toto-1.0,0.4,0.315,0.49,-0.024,-0.047,-0.002
66
- Moirai-2.0,Moirai-2.0,0.5,0.5,0.5,0.0,0.0,0.0
67
- Moirai-2.0,Chronos-Bolt,0.54,0.455,0.625,0.007,-0.016,0.029
68
- Moirai-2.0,TabPFN-TS,0.53,0.44,0.63,-0.004,-0.055,0.042
69
- Moirai-2.0,Sundial-Base,0.855,0.78,0.92,0.089,0.054,0.123
70
- Moirai-2.0,Stat. Ensemble,0.79,0.71,0.86,0.24,0.187,0.292
71
- Moirai-2.0,AutoARIMA,0.87,0.8,0.93,0.236,0.189,0.286
72
- Moirai-2.0,AutoETS,0.82,0.74,0.89,0.5,0.382,0.609
73
- Moirai-2.0,AutoTheta,0.88,0.81,0.93,0.358,0.299,0.415
74
- Moirai-2.0,Seasonal Naive,0.94,0.89,0.98,0.393,0.343,0.448
75
- Moirai-2.0,Naive,0.95,0.9,0.99,0.583,0.523,0.634
76
- Moirai-2.0,Drift,0.94,0.88,0.98,0.584,0.519,0.636
77
- Chronos-Bolt,Chronos-2,0.06,0.02,0.11,-0.159,-0.201,-0.123
78
- Chronos-Bolt,TiRex,0.165,0.095,0.24,-0.064,-0.088,-0.044
79
- Chronos-Bolt,TimesFM-2.5,0.28,0.2,0.365,-0.057,-0.081,-0.034
80
- Chronos-Bolt,Toto-1.0,0.43,0.345,0.525,-0.031,-0.059,-0.001
81
- Chronos-Bolt,Moirai-2.0,0.46,0.375,0.545,-0.007,-0.03,0.016
82
- Chronos-Bolt,Chronos-Bolt,0.5,0.5,0.5,0.0,0.0,0.0
83
- Chronos-Bolt,TabPFN-TS,0.53,0.43,0.63,-0.011,-0.059,0.031
84
- Chronos-Bolt,Sundial-Base,0.815,0.74,0.89,0.082,0.045,0.116
85
- Chronos-Bolt,Stat. Ensemble,0.78,0.69,0.85,0.235,0.184,0.284
86
- Chronos-Bolt,AutoARIMA,0.87,0.8,0.92,0.231,0.188,0.277
87
- Chronos-Bolt,AutoETS,0.8,0.72,0.87,0.496,0.379,0.605
88
- Chronos-Bolt,AutoTheta,0.92,0.86,0.97,0.354,0.3,0.409
89
- Chronos-Bolt,Seasonal Naive,0.96,0.92,0.99,0.389,0.342,0.441
90
- Chronos-Bolt,Naive,0.98,0.95,1.0,0.58,0.524,0.628
91
- Chronos-Bolt,Drift,0.97,0.93,1.0,0.581,0.52,0.63
92
- TabPFN-TS,Chronos-2,0.12,0.06,0.19,-0.146,-0.189,-0.108
93
- TabPFN-TS,TiRex,0.28,0.19,0.37,-0.052,-0.101,-0.005
94
- TabPFN-TS,TimesFM-2.5,0.3,0.21,0.39,-0.045,-0.095,0.005
95
- TabPFN-TS,Toto-1.0,0.43,0.34,0.52,-0.02,-0.076,0.032
96
- TabPFN-TS,Moirai-2.0,0.47,0.37,0.56,0.004,-0.044,0.052
97
- TabPFN-TS,Chronos-Bolt,0.47,0.37,0.57,0.011,-0.032,0.055
98
- TabPFN-TS,TabPFN-TS,0.5,0.5,0.5,0.0,0.0,0.0
99
- TabPFN-TS,Sundial-Base,0.72,0.63,0.8,0.093,0.05,0.135
100
- TabPFN-TS,Stat. Ensemble,0.735,0.645,0.815,0.243,0.19,0.297
101
- TabPFN-TS,AutoARIMA,0.81,0.73,0.88,0.239,0.189,0.292
102
- TabPFN-TS,AutoETS,0.75,0.66,0.83,0.503,0.387,0.611
103
- TabPFN-TS,AutoTheta,0.89,0.82,0.95,0.361,0.302,0.422
104
- TabPFN-TS,Seasonal Naive,0.96,0.92,0.99,0.396,0.346,0.447
105
- TabPFN-TS,Naive,0.96,0.92,0.99,0.584,0.526,0.636
106
- TabPFN-TS,Drift,0.92,0.86,0.97,0.586,0.521,0.639
107
- Sundial-Base,Chronos-2,0.04,0.01,0.08,-0.263,-0.309,-0.219
108
- Sundial-Base,TiRex,0.095,0.04,0.15,-0.159,-0.203,-0.119
109
- Sundial-Base,TimesFM-2.5,0.075,0.03,0.125,-0.152,-0.191,-0.115
110
- Sundial-Base,Toto-1.0,0.175,0.105,0.255,-0.124,-0.172,-0.079
111
- Sundial-Base,Moirai-2.0,0.145,0.08,0.22,-0.097,-0.14,-0.057
112
- Sundial-Base,Chronos-Bolt,0.185,0.11,0.26,-0.09,-0.132,-0.047
113
- Sundial-Base,TabPFN-TS,0.28,0.2,0.37,-0.102,-0.155,-0.053
114
- Sundial-Base,Sundial-Base,0.5,0.5,0.5,0.0,0.0,0.0
115
- Sundial-Base,Stat. Ensemble,0.64,0.55,0.73,0.166,0.096,0.23
116
- Sundial-Base,AutoARIMA,0.71,0.61,0.79,0.162,0.102,0.22
117
- Sundial-Base,AutoETS,0.7,0.61,0.78,0.453,0.323,0.576
118
- Sundial-Base,AutoTheta,0.74,0.65,0.82,0.296,0.226,0.364
119
- Sundial-Base,Seasonal Naive,0.91,0.85,0.96,0.334,0.281,0.392
120
- Sundial-Base,Naive,0.9,0.84,0.96,0.542,0.473,0.598
121
- Sundial-Base,Drift,0.84,0.76,0.91,0.543,0.47,0.602
122
- Stat. Ensemble,Chronos-2,0.05,0.01,0.1,-0.514,-0.63,-0.404
123
- Stat. Ensemble,TiRex,0.08,0.03,0.14,-0.39,-0.488,-0.302
124
- Stat. Ensemble,TimesFM-2.5,0.16,0.09,0.23,-0.381,-0.485,-0.285
125
- Stat. Ensemble,Toto-1.0,0.2,0.13,0.28,-0.347,-0.448,-0.25
126
- Stat. Ensemble,Moirai-2.0,0.21,0.14,0.29,-0.316,-0.412,-0.23
127
- Stat. Ensemble,Chronos-Bolt,0.22,0.15,0.31,-0.307,-0.396,-0.226
128
- Stat. Ensemble,TabPFN-TS,0.265,0.185,0.355,-0.322,-0.423,-0.234
129
- Stat. Ensemble,Sundial-Base,0.36,0.27,0.45,-0.199,-0.298,-0.107
130
- Stat. Ensemble,Stat. Ensemble,0.5,0.5,0.5,0.0,0.0,0.0
131
- Stat. Ensemble,AutoARIMA,0.51,0.42,0.605,-0.005,-0.049,0.041
132
- Stat. Ensemble,AutoETS,0.765,0.68,0.845,0.365,0.22,0.501
133
- Stat. Ensemble,AutoTheta,0.88,0.82,0.94,0.156,0.108,0.208
134
- Stat. Ensemble,Seasonal Naive,0.795,0.725,0.87,0.202,0.148,0.257
135
- Stat. Ensemble,Naive,0.93,0.88,0.98,0.451,0.395,0.503
136
- Stat. Ensemble,Drift,0.95,0.9,0.99,0.452,0.394,0.506
137
- AutoARIMA,Chronos-2,0.04,0.01,0.08,-0.507,-0.612,-0.409
138
- AutoARIMA,TiRex,0.05,0.01,0.1,-0.383,-0.47,-0.311
139
- AutoARIMA,TimesFM-2.5,0.08,0.03,0.14,-0.374,-0.468,-0.301
140
- AutoARIMA,Toto-1.0,0.14,0.08,0.21,-0.341,-0.439,-0.261
141
- AutoARIMA,Moirai-2.0,0.13,0.07,0.2,-0.309,-0.401,-0.233
142
- AutoARIMA,Chronos-Bolt,0.13,0.08,0.2,-0.3,-0.383,-0.232
143
- AutoARIMA,TabPFN-TS,0.19,0.12,0.27,-0.315,-0.412,-0.233
144
- AutoARIMA,Sundial-Base,0.29,0.21,0.39,-0.193,-0.282,-0.114
145
- AutoARIMA,Stat. Ensemble,0.49,0.395,0.58,0.005,-0.043,0.047
146
- AutoARIMA,AutoARIMA,0.5,0.5,0.5,0.0,0.0,0.0
147
- AutoARIMA,AutoETS,0.695,0.615,0.785,0.359,0.211,0.496
148
- AutoARIMA,AutoTheta,0.77,0.69,0.85,0.16,0.099,0.216
149
- AutoARIMA,Seasonal Naive,0.88,0.82,0.935,0.206,0.154,0.263
150
- AutoARIMA,Naive,0.92,0.86,0.97,0.454,0.388,0.512
151
- AutoARIMA,Drift,0.89,0.82,0.95,0.455,0.384,0.516
152
- AutoETS,Chronos-2,0.06,0.02,0.11,-1.285,-1.897,-0.873
153
- AutoETS,TiRex,0.08,0.03,0.14,-1.102,-1.673,-0.714
154
- AutoETS,TimesFM-2.5,0.13,0.07,0.2,-1.087,-1.662,-0.703
155
- AutoETS,Toto-1.0,0.17,0.1,0.25,-1.041,-1.59,-0.672
156
- AutoETS,Moirai-2.0,0.18,0.11,0.26,-0.999,-1.559,-0.619
157
- AutoETS,Chronos-Bolt,0.2,0.13,0.28,-0.983,-1.531,-0.609
158
- AutoETS,TabPFN-TS,0.25,0.17,0.34,-1.011,-1.572,-0.632
159
- AutoETS,Sundial-Base,0.3,0.22,0.39,-0.828,-1.359,-0.478
160
- AutoETS,Stat. Ensemble,0.235,0.155,0.32,-0.575,-1.003,-0.282
161
- AutoETS,AutoARIMA,0.305,0.215,0.385,-0.56,-0.983,-0.268
162
- AutoETS,AutoETS,0.5,0.5,0.5,0.0,0.0,0.0
163
- AutoETS,AutoTheta,0.59,0.49,0.69,-0.345,-0.709,-0.081
164
- AutoETS,Seasonal Naive,0.635,0.545,0.725,-0.268,-0.644,-0.013
165
- AutoETS,Naive,0.77,0.69,0.85,0.104,-0.173,0.297
166
- AutoETS,Drift,0.81,0.73,0.88,0.103,-0.161,0.297
167
- AutoTheta,Chronos-2,0.01,0.0,0.03,-0.793,-0.98,-0.63
168
- AutoTheta,TiRex,0.01,0.0,0.03,-0.646,-0.803,-0.513
169
- AutoTheta,TimesFM-2.5,0.04,0.01,0.09,-0.636,-0.805,-0.495
170
- AutoTheta,Toto-1.0,0.1,0.05,0.17,-0.596,-0.759,-0.449
171
- AutoTheta,Moirai-2.0,0.12,0.07,0.19,-0.558,-0.711,-0.427
172
- AutoTheta,Chronos-Bolt,0.08,0.03,0.14,-0.547,-0.691,-0.429
173
- AutoTheta,TabPFN-TS,0.11,0.05,0.18,-0.565,-0.731,-0.433
174
- AutoTheta,Sundial-Base,0.26,0.18,0.35,-0.42,-0.572,-0.292
175
- AutoTheta,Stat. Ensemble,0.12,0.06,0.18,-0.184,-0.263,-0.121
176
- AutoTheta,AutoARIMA,0.23,0.15,0.31,-0.19,-0.276,-0.11
177
- AutoTheta,AutoETS,0.41,0.31,0.51,0.257,0.075,0.415
178
- AutoTheta,AutoTheta,0.5,0.5,0.5,0.0,0.0,0.0
179
- AutoTheta,Seasonal Naive,0.68,0.58,0.77,0.055,-0.038,0.135
180
- AutoTheta,Naive,0.83,0.75,0.89,0.35,0.293,0.403
181
- AutoTheta,Drift,0.8,0.71,0.87,0.351,0.288,0.408
182
- Seasonal Naive,Chronos-2,0.0,0.0,0.0,-0.897,-1.087,-0.745
183
- Seasonal Naive,TiRex,0.0,0.0,0.0,-0.741,-0.919,-0.611
184
- Seasonal Naive,TimesFM-2.5,0.01,0.0,0.03,-0.73,-0.902,-0.6
185
- Seasonal Naive,Toto-1.0,0.04,0.01,0.08,-0.688,-0.867,-0.548
186
- Seasonal Naive,Moirai-2.0,0.06,0.02,0.11,-0.648,-0.813,-0.522
187
- Seasonal Naive,Chronos-Bolt,0.04,0.01,0.08,-0.636,-0.788,-0.52
188
- Seasonal Naive,TabPFN-TS,0.04,0.01,0.08,-0.655,-0.809,-0.529
189
- Seasonal Naive,Sundial-Base,0.09,0.04,0.15,-0.502,-0.645,-0.39
190
- Seasonal Naive,Stat. Ensemble,0.205,0.13,0.275,-0.253,-0.347,-0.174
191
- Seasonal Naive,AutoARIMA,0.12,0.065,0.18,-0.259,-0.356,-0.182
192
- Seasonal Naive,AutoETS,0.365,0.275,0.455,0.211,0.013,0.392
193
- Seasonal Naive,AutoTheta,0.32,0.23,0.42,-0.058,-0.156,0.037
194
- Seasonal Naive,Seasonal Naive,0.5,0.5,0.5,0.0,0.0,0.0
195
- Seasonal Naive,Naive,0.715,0.64,0.785,0.312,0.229,0.386
196
- Seasonal Naive,Drift,0.82,0.74,0.89,0.314,0.222,0.396
197
- Naive,Chronos-2,0.0,0.0,0.0,-1.758,-2.16,-1.399
198
- Naive,TiRex,0.01,0.0,0.03,-1.532,-1.88,-1.209
199
- Naive,TimesFM-2.5,0.01,0.0,0.03,-1.516,-1.859,-1.189
200
- Naive,Toto-1.0,0.02,0.0,0.05,-1.454,-1.793,-1.135
201
- Naive,Moirai-2.0,0.05,0.01,0.1,-1.397,-1.731,-1.095
202
- Naive,Chronos-Bolt,0.02,0.0,0.05,-1.379,-1.689,-1.099
203
- Naive,TabPFN-TS,0.04,0.01,0.08,-1.407,-1.747,-1.111
204
- Naive,Sundial-Base,0.1,0.04,0.16,-1.184,-1.49,-0.898
205
- Naive,Stat. Ensemble,0.07,0.02,0.12,-0.821,-1.014,-0.653
206
- Naive,AutoARIMA,0.08,0.03,0.14,-0.83,-1.05,-0.635
207
- Naive,AutoETS,0.23,0.15,0.31,-0.116,-0.422,0.148
208
- Naive,AutoTheta,0.17,0.11,0.25,-0.538,-0.676,-0.414
209
- Naive,Seasonal Naive,0.285,0.215,0.36,-0.454,-0.628,-0.298
210
- Naive,Naive,0.5,0.5,0.5,0.0,0.0,0.0
211
- Naive,Drift,0.85,0.78,0.92,0.003,-0.02,0.022
212
- Drift,Chronos-2,0.01,0.0,0.03,-1.765,-2.19,-1.384
213
- Drift,TiRex,0.01,0.0,0.03,-1.539,-1.898,-1.199
214
- Drift,TimesFM-2.5,0.03,0.0,0.07,-1.522,-1.883,-1.184
215
- Drift,Toto-1.0,0.04,0.01,0.08,-1.46,-1.816,-1.126
216
- Drift,Moirai-2.0,0.06,0.02,0.12,-1.403,-1.749,-1.079
217
- Drift,Chronos-Bolt,0.03,0.0,0.07,-1.386,-1.705,-1.084
218
- Drift,TabPFN-TS,0.08,0.03,0.14,-1.413,-1.773,-1.088
219
- Drift,Sundial-Base,0.16,0.09,0.24,-1.19,-1.513,-0.886
220
- Drift,Stat. Ensemble,0.05,0.01,0.1,-0.826,-1.023,-0.65
221
- Drift,AutoARIMA,0.11,0.05,0.18,-0.835,-1.064,-0.623
222
- Drift,AutoETS,0.19,0.12,0.27,-0.115,-0.423,0.139
223
- Drift,AutoTheta,0.2,0.13,0.29,-0.542,-0.69,-0.404
224
- Drift,Seasonal Naive,0.18,0.11,0.26,-0.458,-0.656,-0.285
225
- Drift,Naive,0.15,0.08,0.22,-0.003,-0.023,0.02
226
- Drift,Drift,0.5,0.5,0.5,0.0,0.0,0.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
tables/pairwise_WAPE.csv DELETED
@@ -1,226 +0,0 @@
1
- model_1,model_2,win_rate,win_rate_lower,win_rate_upper,skill_score,skill_score_lower,skill_score_upper
2
- Chronos-2,Chronos-2,0.5,0.5,0.5,0.0,0.0,0.0
3
- Chronos-2,TimesFM-2.5,0.68,0.59,0.76,0.086,0.054,0.118
4
- Chronos-2,TiRex,0.73,0.64,0.81,0.088,0.057,0.12
5
- Chronos-2,Toto-1.0,0.68,0.58,0.76,0.116,0.082,0.153
6
- Chronos-2,TabPFN-TS,0.82,0.74,0.89,0.091,0.058,0.121
7
- Chronos-2,Moirai-2.0,0.84,0.76,0.91,0.126,0.096,0.159
8
- Chronos-2,Chronos-Bolt,0.89,0.82,0.95,0.137,0.105,0.171
9
- Chronos-2,Sundial-Base,0.93,0.88,0.98,0.167,0.134,0.2
10
- Chronos-2,Stat. Ensemble,0.91,0.85,0.96,0.264,0.209,0.312
11
- Chronos-2,AutoARIMA,0.92,0.86,0.97,0.301,0.251,0.35
12
- Chronos-2,AutoETS,0.88,0.81,0.94,0.367,0.293,0.433
13
- Chronos-2,AutoTheta,0.94,0.89,0.98,0.297,0.247,0.344
14
- Chronos-2,Naive,0.93,0.88,0.97,0.429,0.373,0.482
15
- Chronos-2,Seasonal Naive,0.95,0.9,0.99,0.394,0.349,0.44
16
- Chronos-2,Drift,0.93,0.88,0.97,0.442,0.383,0.498
17
- TimesFM-2.5,Chronos-2,0.32,0.24,0.41,-0.094,-0.133,-0.057
18
- TimesFM-2.5,TimesFM-2.5,0.5,0.5,0.5,0.0,0.0,0.0
19
- TimesFM-2.5,TiRex,0.485,0.39,0.58,0.002,-0.014,0.02
20
- TimesFM-2.5,Toto-1.0,0.53,0.445,0.62,0.033,0.006,0.06
21
- TimesFM-2.5,TabPFN-TS,0.63,0.53,0.72,0.005,-0.04,0.051
22
- TimesFM-2.5,Moirai-2.0,0.7,0.615,0.78,0.044,0.019,0.069
23
- TimesFM-2.5,Chronos-Bolt,0.73,0.65,0.81,0.056,0.034,0.079
24
- TimesFM-2.5,Sundial-Base,0.825,0.75,0.9,0.089,0.052,0.125
25
- TimesFM-2.5,Stat. Ensemble,0.84,0.76,0.91,0.195,0.146,0.244
26
- TimesFM-2.5,AutoARIMA,0.91,0.85,0.97,0.236,0.189,0.285
27
- TimesFM-2.5,AutoETS,0.85,0.78,0.91,0.307,0.237,0.376
28
- TimesFM-2.5,AutoTheta,0.92,0.86,0.97,0.231,0.186,0.275
29
- TimesFM-2.5,Naive,0.93,0.87,0.98,0.375,0.321,0.43
30
- TimesFM-2.5,Seasonal Naive,0.95,0.9,0.99,0.337,0.293,0.386
31
- TimesFM-2.5,Drift,0.92,0.86,0.97,0.39,0.336,0.445
32
- TiRex,Chronos-2,0.27,0.19,0.36,-0.097,-0.137,-0.06
33
- TiRex,TimesFM-2.5,0.515,0.42,0.61,-0.002,-0.02,0.014
34
- TiRex,TiRex,0.5,0.5,0.5,0.0,0.0,0.0
35
- TiRex,Toto-1.0,0.625,0.53,0.72,0.03,0.007,0.051
36
- TiRex,TabPFN-TS,0.65,0.56,0.74,0.003,-0.045,0.052
37
- TiRex,Moirai-2.0,0.695,0.615,0.79,0.042,0.023,0.065
38
- TiRex,Chronos-Bolt,0.745,0.66,0.83,0.054,0.032,0.077
39
- TiRex,Sundial-Base,0.775,0.695,0.85,0.087,0.048,0.126
40
- TiRex,Stat. Ensemble,0.82,0.73,0.89,0.193,0.146,0.242
41
- TiRex,AutoARIMA,0.88,0.81,0.94,0.234,0.189,0.282
42
- TiRex,AutoETS,0.84,0.76,0.91,0.306,0.233,0.374
43
- TiRex,AutoTheta,0.93,0.88,0.98,0.229,0.187,0.272
44
- TiRex,Naive,0.93,0.88,0.98,0.374,0.321,0.429
45
- TiRex,Seasonal Naive,0.95,0.9,0.99,0.336,0.29,0.384
46
- TiRex,Drift,0.91,0.85,0.96,0.388,0.335,0.443
47
- Toto-1.0,Chronos-2,0.32,0.24,0.42,-0.131,-0.18,-0.089
48
- Toto-1.0,TimesFM-2.5,0.47,0.38,0.555,-0.034,-0.064,-0.007
49
- Toto-1.0,TiRex,0.375,0.28,0.47,-0.031,-0.054,-0.007
50
- Toto-1.0,Toto-1.0,0.5,0.5,0.5,0.0,0.0,0.0
51
- Toto-1.0,TabPFN-TS,0.56,0.47,0.65,-0.028,-0.083,0.024
52
- Toto-1.0,Moirai-2.0,0.6,0.5,0.69,0.012,-0.012,0.036
53
- Toto-1.0,Chronos-Bolt,0.6,0.505,0.685,0.024,-0.004,0.052
54
- Toto-1.0,Sundial-Base,0.665,0.575,0.75,0.058,0.011,0.103
55
- Toto-1.0,Stat. Ensemble,0.69,0.59,0.78,0.168,0.115,0.219
56
- Toto-1.0,AutoARIMA,0.82,0.74,0.89,0.21,0.157,0.261
57
- Toto-1.0,AutoETS,0.77,0.68,0.84,0.284,0.208,0.353
58
- Toto-1.0,AutoTheta,0.87,0.8,0.93,0.205,0.158,0.252
59
- Toto-1.0,Naive,0.91,0.85,0.96,0.354,0.296,0.408
60
- Toto-1.0,Seasonal Naive,0.92,0.86,0.97,0.315,0.266,0.365
61
- Toto-1.0,Drift,0.9,0.83,0.96,0.369,0.315,0.424
62
- TabPFN-TS,Chronos-2,0.18,0.11,0.26,-0.1,-0.138,-0.061
63
- TabPFN-TS,TimesFM-2.5,0.37,0.28,0.47,-0.005,-0.054,0.039
64
- TabPFN-TS,TiRex,0.35,0.26,0.44,-0.003,-0.055,0.043
65
- TabPFN-TS,Toto-1.0,0.44,0.35,0.53,0.027,-0.024,0.076
66
- TabPFN-TS,TabPFN-TS,0.5,0.5,0.5,0.0,0.0,0.0
67
- TabPFN-TS,Moirai-2.0,0.52,0.42,0.62,0.039,-0.012,0.085
68
- TabPFN-TS,Chronos-Bolt,0.53,0.44,0.62,0.051,0.006,0.094
69
- TabPFN-TS,Sundial-Base,0.66,0.56,0.75,0.084,0.041,0.126
70
- TabPFN-TS,Stat. Ensemble,0.775,0.695,0.855,0.19,0.134,0.242
71
- TabPFN-TS,AutoARIMA,0.83,0.76,0.9,0.232,0.178,0.283
72
- TabPFN-TS,AutoETS,0.77,0.69,0.85,0.303,0.23,0.382
73
- TabPFN-TS,AutoTheta,0.84,0.76,0.9,0.227,0.18,0.277
74
- TabPFN-TS,Naive,0.91,0.85,0.96,0.372,0.316,0.432
75
- TabPFN-TS,Seasonal Naive,0.94,0.89,0.98,0.334,0.29,0.379
76
- TabPFN-TS,Drift,0.89,0.83,0.95,0.386,0.328,0.447
77
- Moirai-2.0,Chronos-2,0.16,0.09,0.24,-0.145,-0.189,-0.106
78
- Moirai-2.0,TimesFM-2.5,0.3,0.22,0.385,-0.046,-0.075,-0.02
79
- Moirai-2.0,TiRex,0.305,0.21,0.385,-0.044,-0.069,-0.023
80
- Moirai-2.0,Toto-1.0,0.4,0.31,0.5,-0.012,-0.038,0.012
81
- Moirai-2.0,TabPFN-TS,0.48,0.38,0.58,-0.041,-0.093,0.012
82
- Moirai-2.0,Moirai-2.0,0.5,0.5,0.5,0.0,0.0,0.0
83
- Moirai-2.0,Chronos-Bolt,0.56,0.48,0.645,0.013,-0.011,0.036
84
- Moirai-2.0,Sundial-Base,0.665,0.57,0.76,0.047,0.005,0.087
85
- Moirai-2.0,Stat. Ensemble,0.74,0.65,0.82,0.157,0.105,0.208
86
- Moirai-2.0,AutoARIMA,0.83,0.75,0.9,0.2,0.148,0.254
87
- Moirai-2.0,AutoETS,0.77,0.68,0.85,0.275,0.196,0.35
88
- Moirai-2.0,AutoTheta,0.88,0.81,0.94,0.196,0.147,0.243
89
- Moirai-2.0,Naive,0.87,0.8,0.93,0.346,0.29,0.403
90
- Moirai-2.0,Seasonal Naive,0.87,0.8,0.93,0.307,0.258,0.357
91
- Moirai-2.0,Drift,0.87,0.8,0.93,0.361,0.303,0.417
92
- Chronos-Bolt,Chronos-2,0.11,0.05,0.18,-0.159,-0.207,-0.117
93
- Chronos-Bolt,TimesFM-2.5,0.27,0.19,0.35,-0.06,-0.086,-0.035
94
- Chronos-Bolt,TiRex,0.255,0.17,0.34,-0.057,-0.083,-0.033
95
- Chronos-Bolt,Toto-1.0,0.4,0.315,0.495,-0.025,-0.055,0.004
96
- Chronos-Bolt,TabPFN-TS,0.47,0.38,0.56,-0.054,-0.104,-0.006
97
- Chronos-Bolt,Moirai-2.0,0.44,0.355,0.52,-0.013,-0.038,0.011
98
- Chronos-Bolt,Chronos-Bolt,0.5,0.5,0.5,0.0,0.0,0.0
99
- Chronos-Bolt,Sundial-Base,0.635,0.54,0.73,0.034,-0.006,0.071
100
- Chronos-Bolt,Stat. Ensemble,0.74,0.64,0.82,0.147,0.096,0.198
101
- Chronos-Bolt,AutoARIMA,0.85,0.77,0.92,0.19,0.137,0.242
102
- Chronos-Bolt,AutoETS,0.77,0.68,0.85,0.266,0.19,0.341
103
- Chronos-Bolt,AutoTheta,0.92,0.87,0.97,0.185,0.139,0.232
104
- Chronos-Bolt,Naive,0.89,0.83,0.95,0.338,0.28,0.394
105
- Chronos-Bolt,Seasonal Naive,0.91,0.85,0.96,0.298,0.252,0.345
106
- Chronos-Bolt,Drift,0.9,0.84,0.95,0.353,0.296,0.41
107
- Sundial-Base,Chronos-2,0.07,0.02,0.12,-0.2,-0.25,-0.154
108
- Sundial-Base,TimesFM-2.5,0.175,0.1,0.25,-0.097,-0.143,-0.055
109
- Sundial-Base,TiRex,0.225,0.15,0.305,-0.095,-0.144,-0.05
110
- Sundial-Base,Toto-1.0,0.335,0.25,0.425,-0.062,-0.115,-0.012
111
- Sundial-Base,TabPFN-TS,0.34,0.25,0.44,-0.092,-0.144,-0.042
112
- Sundial-Base,Moirai-2.0,0.335,0.24,0.43,-0.049,-0.095,-0.005
113
- Sundial-Base,Chronos-Bolt,0.365,0.27,0.46,-0.036,-0.076,0.006
114
- Sundial-Base,Sundial-Base,0.5,0.5,0.5,0.0,0.0,0.0
115
- Sundial-Base,Stat. Ensemble,0.64,0.54,0.73,0.116,0.05,0.174
116
- Sundial-Base,AutoARIMA,0.76,0.67,0.84,0.161,0.097,0.218
117
- Sundial-Base,AutoETS,0.68,0.58,0.77,0.24,0.149,0.317
118
- Sundial-Base,AutoTheta,0.74,0.64,0.82,0.156,0.099,0.206
119
- Sundial-Base,Naive,0.82,0.74,0.89,0.315,0.248,0.38
120
- Sundial-Base,Seasonal Naive,0.88,0.81,0.94,0.273,0.225,0.319
121
- Sundial-Base,Drift,0.81,0.73,0.88,0.33,0.261,0.398
122
- Stat. Ensemble,Chronos-2,0.09,0.04,0.15,-0.358,-0.454,-0.265
123
- Stat. Ensemble,TimesFM-2.5,0.16,0.09,0.24,-0.242,-0.322,-0.171
124
- Stat. Ensemble,TiRex,0.18,0.11,0.27,-0.239,-0.319,-0.171
125
- Stat. Ensemble,Toto-1.0,0.31,0.22,0.41,-0.201,-0.28,-0.13
126
- Stat. Ensemble,TabPFN-TS,0.225,0.145,0.305,-0.235,-0.32,-0.155
127
- Stat. Ensemble,Moirai-2.0,0.26,0.18,0.35,-0.187,-0.263,-0.117
128
- Stat. Ensemble,Chronos-Bolt,0.26,0.18,0.36,-0.172,-0.246,-0.107
129
- Stat. Ensemble,Sundial-Base,0.36,0.27,0.46,-0.132,-0.211,-0.052
130
- Stat. Ensemble,Stat. Ensemble,0.5,0.5,0.5,0.0,0.0,0.0
131
- Stat. Ensemble,AutoARIMA,0.65,0.56,0.74,0.051,0.02,0.086
132
- Stat. Ensemble,AutoETS,0.785,0.7,0.86,0.14,0.071,0.209
133
- Stat. Ensemble,AutoTheta,0.81,0.73,0.88,0.045,0.009,0.078
134
- Stat. Ensemble,Naive,0.84,0.77,0.91,0.224,0.169,0.277
135
- Stat. Ensemble,Seasonal Naive,0.835,0.77,0.9,0.177,0.138,0.221
136
- Stat. Ensemble,Drift,0.86,0.79,0.92,0.242,0.192,0.293
137
- AutoARIMA,Chronos-2,0.08,0.03,0.14,-0.431,-0.538,-0.335
138
- AutoARIMA,TimesFM-2.5,0.09,0.03,0.15,-0.308,-0.399,-0.234
139
- AutoARIMA,TiRex,0.12,0.06,0.19,-0.305,-0.393,-0.233
140
- AutoARIMA,Toto-1.0,0.18,0.11,0.26,-0.266,-0.353,-0.187
141
- AutoARIMA,TabPFN-TS,0.17,0.1,0.24,-0.301,-0.395,-0.217
142
- AutoARIMA,Moirai-2.0,0.17,0.1,0.25,-0.251,-0.341,-0.173
143
- AutoARIMA,Chronos-Bolt,0.15,0.08,0.23,-0.235,-0.319,-0.159
144
- AutoARIMA,Sundial-Base,0.24,0.16,0.33,-0.192,-0.278,-0.107
145
- AutoARIMA,Stat. Ensemble,0.35,0.26,0.44,-0.054,-0.095,-0.02
146
- AutoARIMA,AutoARIMA,0.5,0.5,0.5,0.0,0.0,0.0
147
- AutoARIMA,AutoETS,0.555,0.46,0.655,0.093,0.015,0.175
148
- AutoARIMA,AutoTheta,0.52,0.42,0.62,-0.006,-0.057,0.039
149
- AutoARIMA,Naive,0.72,0.63,0.8,0.183,0.118,0.242
150
- AutoARIMA,Seasonal Naive,0.8,0.735,0.875,0.133,0.09,0.178
151
- AutoARIMA,Drift,0.75,0.65,0.83,0.201,0.14,0.261
152
- AutoETS,Chronos-2,0.12,0.06,0.19,-0.579,-0.764,-0.414
153
- AutoETS,TimesFM-2.5,0.15,0.09,0.22,-0.443,-0.602,-0.31
154
- AutoETS,TiRex,0.16,0.09,0.24,-0.44,-0.598,-0.303
155
- AutoETS,Toto-1.0,0.23,0.16,0.32,-0.396,-0.547,-0.263
156
- AutoETS,TabPFN-TS,0.23,0.15,0.31,-0.436,-0.617,-0.299
157
- AutoETS,Moirai-2.0,0.23,0.15,0.32,-0.38,-0.538,-0.243
158
- AutoETS,Chronos-Bolt,0.23,0.15,0.32,-0.362,-0.518,-0.235
159
- AutoETS,Sundial-Base,0.32,0.23,0.42,-0.315,-0.464,-0.175
160
- AutoETS,Stat. Ensemble,0.215,0.14,0.3,-0.162,-0.264,-0.077
161
- AutoETS,AutoARIMA,0.445,0.345,0.54,-0.103,-0.212,-0.015
162
- AutoETS,AutoETS,0.5,0.5,0.5,0.0,0.0,0.0
163
- AutoETS,AutoTheta,0.47,0.37,0.56,-0.11,-0.214,-0.027
164
- AutoETS,Naive,0.62,0.53,0.72,0.098,0.018,0.177
165
- AutoETS,Seasonal Naive,0.685,0.585,0.775,0.043,-0.061,0.128
166
- AutoETS,Drift,0.74,0.66,0.82,0.119,0.042,0.194
167
- AutoTheta,Chronos-2,0.06,0.02,0.11,-0.423,-0.524,-0.328
168
- AutoTheta,TimesFM-2.5,0.08,0.03,0.14,-0.301,-0.38,-0.229
169
- AutoTheta,TiRex,0.07,0.02,0.12,-0.297,-0.374,-0.23
170
- AutoTheta,Toto-1.0,0.13,0.07,0.2,-0.258,-0.337,-0.188
171
- AutoTheta,TabPFN-TS,0.16,0.1,0.24,-0.294,-0.383,-0.22
172
- AutoTheta,Moirai-2.0,0.12,0.06,0.19,-0.243,-0.32,-0.172
173
- AutoTheta,Chronos-Bolt,0.08,0.03,0.13,-0.227,-0.302,-0.161
174
- AutoTheta,Sundial-Base,0.26,0.18,0.36,-0.185,-0.26,-0.11
175
- AutoTheta,Stat. Ensemble,0.19,0.12,0.27,-0.047,-0.085,-0.009
176
- AutoTheta,AutoARIMA,0.48,0.38,0.58,0.006,-0.041,0.054
177
- AutoTheta,AutoETS,0.53,0.44,0.63,0.099,0.026,0.177
178
- AutoTheta,AutoTheta,0.5,0.5,0.5,0.0,0.0,0.0
179
- AutoTheta,Naive,0.76,0.68,0.84,0.188,0.138,0.239
180
- AutoTheta,Seasonal Naive,0.78,0.69,0.86,0.138,0.099,0.18
181
- AutoTheta,Drift,0.78,0.7,0.86,0.206,0.158,0.26
182
- Naive,Chronos-2,0.07,0.03,0.12,-0.751,-0.93,-0.594
183
- Naive,TimesFM-2.5,0.07,0.02,0.13,-0.601,-0.753,-0.473
184
- Naive,TiRex,0.07,0.02,0.12,-0.597,-0.75,-0.473
185
- Naive,Toto-1.0,0.09,0.04,0.15,-0.549,-0.689,-0.421
186
- Naive,TabPFN-TS,0.09,0.04,0.15,-0.592,-0.761,-0.461
187
- Naive,Moirai-2.0,0.13,0.07,0.2,-0.53,-0.674,-0.408
188
- Naive,Chronos-Bolt,0.11,0.05,0.17,-0.511,-0.649,-0.39
189
- Naive,Sundial-Base,0.18,0.11,0.26,-0.459,-0.613,-0.331
190
- Naive,Stat. Ensemble,0.16,0.09,0.23,-0.289,-0.383,-0.203
191
- Naive,AutoARIMA,0.28,0.2,0.37,-0.223,-0.319,-0.134
192
- Naive,AutoETS,0.38,0.28,0.47,-0.109,-0.215,-0.018
193
- Naive,AutoTheta,0.24,0.16,0.32,-0.231,-0.314,-0.161
194
- Naive,Naive,0.5,0.5,0.5,0.0,0.0,0.0
195
- Naive,Seasonal Naive,0.475,0.39,0.565,-0.061,-0.146,0.017
196
- Naive,Drift,0.84,0.77,0.91,0.023,-0.005,0.048
197
- Seasonal Naive,Chronos-2,0.05,0.01,0.1,-0.65,-0.787,-0.536
198
- Seasonal Naive,TimesFM-2.5,0.05,0.01,0.1,-0.509,-0.63,-0.414
199
- Seasonal Naive,TiRex,0.05,0.01,0.1,-0.505,-0.623,-0.408
200
- Seasonal Naive,Toto-1.0,0.08,0.03,0.14,-0.46,-0.575,-0.362
201
- Seasonal Naive,TabPFN-TS,0.06,0.02,0.11,-0.501,-0.61,-0.409
202
- Seasonal Naive,Moirai-2.0,0.13,0.07,0.2,-0.442,-0.555,-0.347
203
- Seasonal Naive,Chronos-Bolt,0.09,0.04,0.15,-0.424,-0.527,-0.336
204
- Seasonal Naive,Sundial-Base,0.12,0.06,0.19,-0.375,-0.469,-0.29
205
- Seasonal Naive,Stat. Ensemble,0.165,0.1,0.23,-0.215,-0.283,-0.161
206
- Seasonal Naive,AutoARIMA,0.2,0.125,0.265,-0.153,-0.217,-0.099
207
- Seasonal Naive,AutoETS,0.315,0.225,0.415,-0.045,-0.147,0.057
208
- Seasonal Naive,AutoTheta,0.22,0.14,0.31,-0.16,-0.219,-0.11
209
- Seasonal Naive,Naive,0.525,0.435,0.61,0.058,-0.017,0.127
210
- Seasonal Naive,Seasonal Naive,0.5,0.5,0.5,0.0,0.0,0.0
211
- Seasonal Naive,Drift,0.64,0.53,0.73,0.079,-0.001,0.153
212
- Drift,Chronos-2,0.07,0.03,0.12,-0.792,-0.994,-0.62
213
- Drift,TimesFM-2.5,0.08,0.03,0.14,-0.639,-0.801,-0.507
214
- Drift,TiRex,0.09,0.04,0.15,-0.635,-0.796,-0.504
215
- Drift,Toto-1.0,0.1,0.04,0.17,-0.585,-0.735,-0.459
216
- Drift,TabPFN-TS,0.11,0.05,0.17,-0.63,-0.807,-0.488
217
- Drift,Moirai-2.0,0.13,0.07,0.2,-0.566,-0.715,-0.435
218
- Drift,Chronos-Bolt,0.1,0.05,0.16,-0.546,-0.695,-0.42
219
- Drift,Sundial-Base,0.19,0.12,0.27,-0.493,-0.66,-0.354
220
- Drift,Stat. Ensemble,0.14,0.08,0.21,-0.32,-0.415,-0.238
221
- Drift,AutoARIMA,0.25,0.17,0.35,-0.252,-0.353,-0.163
222
- Drift,AutoETS,0.26,0.18,0.34,-0.135,-0.24,-0.044
223
- Drift,AutoTheta,0.22,0.14,0.3,-0.26,-0.351,-0.188
224
- Drift,Naive,0.16,0.09,0.23,-0.023,-0.051,0.005
225
- Drift,Seasonal Naive,0.36,0.27,0.47,-0.086,-0.181,0.001
226
- Drift,Drift,0.5,0.5,0.5,0.0,0.0,0.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
tables/pairwise_WQL.csv DELETED
@@ -1,226 +0,0 @@
1
- model_1,model_2,win_rate,win_rate_lower,win_rate_upper,skill_score,skill_score_lower,skill_score_upper
2
- Chronos-2,Chronos-2,0.5,0.5,0.5,0.0,0.0,0.0
3
- Chronos-2,TiRex,0.74,0.65,0.82,0.091,0.058,0.126
4
- Chronos-2,TimesFM-2.5,0.72,0.63,0.8,0.09,0.059,0.122
5
- Chronos-2,Toto-1.0,0.7,0.6,0.79,0.119,0.084,0.156
6
- Chronos-2,TabPFN-TS,0.81,0.73,0.89,0.105,0.072,0.134
7
- Chronos-2,Moirai-2.0,0.86,0.79,0.92,0.136,0.105,0.17
8
- Chronos-2,Chronos-Bolt,0.9,0.84,0.95,0.147,0.114,0.18
9
- Chronos-2,Sundial-Base,0.97,0.93,1.0,0.225,0.194,0.255
10
- Chronos-2,Stat. Ensemble,0.95,0.9,0.99,0.38,0.324,0.431
11
- Chronos-2,AutoARIMA,0.96,0.92,0.99,0.367,0.316,0.416
12
- Chronos-2,AutoETS,0.95,0.9,0.99,0.597,0.5,0.684
13
- Chronos-2,AutoTheta,0.98,0.95,1.0,0.474,0.418,0.529
14
- Chronos-2,Seasonal Naive,0.98,0.95,1.0,0.515,0.469,0.559
15
- Chronos-2,Naive,0.98,0.95,1.0,0.652,0.603,0.693
16
- Chronos-2,Drift,0.98,0.95,1.0,0.654,0.603,0.697
17
- TiRex,Chronos-2,0.26,0.18,0.35,-0.1,-0.144,-0.062
18
- TiRex,TiRex,0.5,0.5,0.5,0.0,0.0,0.0
19
- TiRex,TimesFM-2.5,0.555,0.455,0.65,-0.001,-0.02,0.017
20
- TiRex,Toto-1.0,0.685,0.6,0.77,0.03,0.009,0.05
21
- TiRex,TabPFN-TS,0.64,0.54,0.74,0.016,-0.033,0.063
22
- TiRex,Moirai-2.0,0.795,0.715,0.87,0.05,0.03,0.073
23
- TiRex,Chronos-Bolt,0.815,0.735,0.885,0.061,0.039,0.083
24
- TiRex,Sundial-Base,0.895,0.835,0.95,0.148,0.11,0.185
25
- TiRex,Stat. Ensemble,0.89,0.83,0.95,0.318,0.262,0.374
26
- TiRex,AutoARIMA,0.93,0.87,0.98,0.304,0.256,0.352
27
- TiRex,AutoETS,0.92,0.86,0.97,0.558,0.449,0.655
28
- TiRex,AutoTheta,0.95,0.9,0.99,0.421,0.365,0.479
29
- TiRex,Seasonal Naive,0.99,0.96,1.0,0.467,0.42,0.515
30
- TiRex,Naive,0.99,0.96,1.0,0.617,0.565,0.663
31
- TiRex,Drift,0.97,0.93,1.0,0.619,0.567,0.666
32
- TimesFM-2.5,Chronos-2,0.28,0.2,0.37,-0.099,-0.139,-0.063
33
- TimesFM-2.5,TiRex,0.445,0.35,0.545,0.001,-0.017,0.019
34
- TimesFM-2.5,TimesFM-2.5,0.5,0.5,0.5,0.0,0.0,0.0
35
- TimesFM-2.5,Toto-1.0,0.56,0.475,0.655,0.031,0.006,0.057
36
- TimesFM-2.5,TabPFN-TS,0.64,0.54,0.74,0.017,-0.031,0.062
37
- TimesFM-2.5,Moirai-2.0,0.73,0.645,0.81,0.051,0.028,0.076
38
- TimesFM-2.5,Chronos-Bolt,0.76,0.685,0.835,0.062,0.04,0.085
39
- TimesFM-2.5,Sundial-Base,0.905,0.845,0.96,0.148,0.114,0.183
40
- TimesFM-2.5,Stat. Ensemble,0.9,0.84,0.95,0.319,0.262,0.376
41
- TimesFM-2.5,AutoARIMA,0.93,0.88,0.98,0.304,0.255,0.357
42
- TimesFM-2.5,AutoETS,0.9,0.84,0.95,0.558,0.449,0.655
43
- TimesFM-2.5,AutoTheta,0.96,0.91,0.99,0.422,0.362,0.483
44
- TimesFM-2.5,Seasonal Naive,0.99,0.97,1.0,0.467,0.422,0.518
45
- TimesFM-2.5,Naive,0.99,0.97,1.0,0.617,0.564,0.664
46
- TimesFM-2.5,Drift,0.97,0.93,1.0,0.62,0.565,0.667
47
- Toto-1.0,Chronos-2,0.3,0.21,0.4,-0.134,-0.185,-0.092
48
- Toto-1.0,TiRex,0.315,0.23,0.4,-0.031,-0.053,-0.009
49
- Toto-1.0,TimesFM-2.5,0.44,0.345,0.525,-0.032,-0.061,-0.006
50
- Toto-1.0,Toto-1.0,0.5,0.5,0.5,0.0,0.0,0.0
51
- Toto-1.0,TabPFN-TS,0.54,0.45,0.63,-0.015,-0.073,0.036
52
- Toto-1.0,Moirai-2.0,0.59,0.49,0.68,0.02,-0.003,0.044
53
- Toto-1.0,Chronos-Bolt,0.61,0.52,0.695,0.032,0.003,0.061
54
- Toto-1.0,Sundial-Base,0.795,0.715,0.87,0.121,0.079,0.163
55
- Toto-1.0,Stat. Ensemble,0.81,0.73,0.88,0.297,0.235,0.356
56
- Toto-1.0,AutoARIMA,0.85,0.78,0.92,0.282,0.23,0.336
57
- Toto-1.0,AutoETS,0.84,0.76,0.91,0.545,0.433,0.645
58
- Toto-1.0,AutoTheta,0.93,0.87,0.97,0.403,0.341,0.465
59
- Toto-1.0,Seasonal Naive,0.96,0.92,0.99,0.45,0.397,0.501
60
- Toto-1.0,Naive,0.97,0.93,1.0,0.605,0.55,0.652
61
- Toto-1.0,Drift,0.97,0.93,1.0,0.607,0.551,0.656
62
- TabPFN-TS,Chronos-2,0.19,0.11,0.27,-0.117,-0.155,-0.078
63
- TabPFN-TS,TiRex,0.36,0.26,0.46,-0.016,-0.067,0.032
64
- TabPFN-TS,TimesFM-2.5,0.36,0.26,0.46,-0.017,-0.066,0.03
65
- TabPFN-TS,Toto-1.0,0.46,0.37,0.55,0.015,-0.037,0.068
66
- TabPFN-TS,TabPFN-TS,0.5,0.5,0.5,0.0,0.0,0.0
67
- TabPFN-TS,Moirai-2.0,0.55,0.46,0.65,0.035,-0.017,0.084
68
- TabPFN-TS,Chronos-Bolt,0.52,0.43,0.61,0.046,0.0,0.092
69
- TabPFN-TS,Sundial-Base,0.79,0.71,0.87,0.134,0.09,0.175
70
- TabPFN-TS,Stat. Ensemble,0.795,0.715,0.875,0.307,0.247,0.365
71
- TabPFN-TS,AutoARIMA,0.83,0.75,0.9,0.293,0.239,0.348
72
- TabPFN-TS,AutoETS,0.85,0.78,0.92,0.554,0.442,0.654
73
- TabPFN-TS,AutoTheta,0.94,0.89,0.98,0.412,0.352,0.471
74
- TabPFN-TS,Seasonal Naive,0.97,0.935,0.995,0.458,0.412,0.506
75
- TabPFN-TS,Naive,0.97,0.93,1.0,0.611,0.556,0.657
76
- TabPFN-TS,Drift,0.95,0.9,0.98,0.613,0.557,0.661
77
- Moirai-2.0,Chronos-2,0.14,0.08,0.21,-0.158,-0.204,-0.118
78
- Moirai-2.0,TiRex,0.205,0.13,0.285,-0.053,-0.078,-0.031
79
- Moirai-2.0,TimesFM-2.5,0.27,0.19,0.355,-0.054,-0.082,-0.029
80
- Moirai-2.0,Toto-1.0,0.41,0.32,0.51,-0.021,-0.046,0.003
81
- Moirai-2.0,TabPFN-TS,0.45,0.35,0.54,-0.036,-0.091,0.017
82
- Moirai-2.0,Moirai-2.0,0.5,0.5,0.5,0.0,0.0,0.0
83
- Moirai-2.0,Chronos-Bolt,0.59,0.505,0.67,0.012,-0.013,0.037
84
- Moirai-2.0,Sundial-Base,0.865,0.79,0.93,0.103,0.062,0.14
85
- Moirai-2.0,Stat. Ensemble,0.84,0.76,0.91,0.282,0.222,0.343
86
- Moirai-2.0,AutoARIMA,0.89,0.82,0.95,0.267,0.214,0.322
87
- Moirai-2.0,AutoETS,0.87,0.8,0.93,0.537,0.421,0.639
88
- Moirai-2.0,AutoTheta,0.91,0.85,0.96,0.391,0.33,0.454
89
- Moirai-2.0,Seasonal Naive,0.93,0.87,0.97,0.439,0.387,0.49
90
- Moirai-2.0,Naive,0.95,0.9,0.99,0.597,0.541,0.645
91
- Moirai-2.0,Drift,0.95,0.9,0.99,0.599,0.542,0.649
92
- Chronos-Bolt,Chronos-2,0.1,0.05,0.16,-0.172,-0.22,-0.129
93
- Chronos-Bolt,TiRex,0.185,0.115,0.265,-0.065,-0.091,-0.041
94
- Chronos-Bolt,TimesFM-2.5,0.24,0.165,0.315,-0.066,-0.092,-0.042
95
- Chronos-Bolt,Toto-1.0,0.39,0.305,0.48,-0.033,-0.065,-0.003
96
- Chronos-Bolt,TabPFN-TS,0.48,0.39,0.57,-0.049,-0.101,-0.0
97
- Chronos-Bolt,Moirai-2.0,0.41,0.33,0.495,-0.012,-0.038,0.013
98
- Chronos-Bolt,Chronos-Bolt,0.5,0.5,0.5,0.0,0.0,0.0
99
- Chronos-Bolt,Sundial-Base,0.785,0.705,0.865,0.092,0.051,0.128
100
- Chronos-Bolt,Stat. Ensemble,0.85,0.78,0.92,0.274,0.215,0.332
101
- Chronos-Bolt,AutoARIMA,0.88,0.81,0.94,0.258,0.207,0.31
102
- Chronos-Bolt,AutoETS,0.87,0.8,0.93,0.531,0.418,0.635
103
- Chronos-Bolt,AutoTheta,0.96,0.92,0.99,0.384,0.323,0.446
104
- Chronos-Bolt,Seasonal Naive,0.97,0.94,1.0,0.432,0.384,0.482
105
- Chronos-Bolt,Naive,0.98,0.95,1.0,0.592,0.537,0.639
106
- Chronos-Bolt,Drift,0.98,0.95,1.0,0.594,0.539,0.643
107
- Sundial-Base,Chronos-2,0.03,0.0,0.07,-0.29,-0.343,-0.24
108
- Sundial-Base,TiRex,0.105,0.05,0.165,-0.173,-0.226,-0.124
109
- Sundial-Base,TimesFM-2.5,0.095,0.04,0.155,-0.174,-0.223,-0.129
110
- Sundial-Base,Toto-1.0,0.205,0.13,0.285,-0.138,-0.195,-0.085
111
- Sundial-Base,TabPFN-TS,0.21,0.13,0.29,-0.155,-0.212,-0.099
112
- Sundial-Base,Moirai-2.0,0.135,0.07,0.21,-0.114,-0.163,-0.066
113
- Sundial-Base,Chronos-Bolt,0.215,0.135,0.295,-0.101,-0.147,-0.053
114
- Sundial-Base,Sundial-Base,0.5,0.5,0.5,0.0,0.0,0.0
115
- Sundial-Base,Stat. Ensemble,0.68,0.58,0.76,0.2,0.124,0.268
116
- Sundial-Base,AutoARIMA,0.73,0.63,0.81,0.183,0.114,0.245
117
- Sundial-Base,AutoETS,0.71,0.61,0.79,0.486,0.353,0.603
118
- Sundial-Base,AutoTheta,0.77,0.68,0.85,0.321,0.25,0.391
119
- Sundial-Base,Seasonal Naive,0.91,0.85,0.96,0.374,0.322,0.43
120
- Sundial-Base,Naive,0.91,0.85,0.96,0.55,0.489,0.605
121
- Sundial-Base,Drift,0.88,0.81,0.94,0.553,0.487,0.611
122
- Stat. Ensemble,Chronos-2,0.05,0.01,0.1,-0.613,-0.757,-0.479
123
- Stat. Ensemble,TiRex,0.11,0.05,0.17,-0.466,-0.598,-0.355
124
- Stat. Ensemble,TimesFM-2.5,0.1,0.05,0.16,-0.468,-0.603,-0.355
125
- Stat. Ensemble,Toto-1.0,0.19,0.12,0.27,-0.422,-0.552,-0.307
126
- Stat. Ensemble,TabPFN-TS,0.205,0.125,0.285,-0.443,-0.575,-0.329
127
- Stat. Ensemble,Moirai-2.0,0.16,0.09,0.24,-0.393,-0.521,-0.285
128
- Stat. Ensemble,Chronos-Bolt,0.15,0.08,0.22,-0.377,-0.496,-0.274
129
- Stat. Ensemble,Sundial-Base,0.32,0.24,0.42,-0.25,-0.366,-0.142
130
- Stat. Ensemble,Stat. Ensemble,0.5,0.5,0.5,0.0,0.0,0.0
131
- Stat. Ensemble,AutoARIMA,0.5,0.41,0.6,-0.021,-0.061,0.02
132
- Stat. Ensemble,AutoETS,0.755,0.67,0.835,0.38,0.234,0.517
133
- Stat. Ensemble,AutoTheta,0.87,0.81,0.93,0.151,0.111,0.194
134
- Stat. Ensemble,Seasonal Naive,0.835,0.77,0.895,0.218,0.166,0.273
135
- Stat. Ensemble,Naive,0.97,0.93,1.0,0.438,0.386,0.484
136
- Stat. Ensemble,Drift,0.97,0.93,1.0,0.442,0.387,0.49
137
- AutoARIMA,Chronos-2,0.04,0.01,0.08,-0.58,-0.711,-0.461
138
- AutoARIMA,TiRex,0.07,0.02,0.13,-0.436,-0.543,-0.345
139
- AutoARIMA,TimesFM-2.5,0.07,0.02,0.12,-0.438,-0.556,-0.342
140
- AutoARIMA,Toto-1.0,0.15,0.08,0.22,-0.393,-0.505,-0.299
141
- AutoARIMA,TabPFN-TS,0.17,0.1,0.25,-0.414,-0.533,-0.315
142
- AutoARIMA,Moirai-2.0,0.11,0.05,0.18,-0.365,-0.476,-0.272
143
- AutoARIMA,Chronos-Bolt,0.12,0.06,0.19,-0.348,-0.449,-0.261
144
- AutoARIMA,Sundial-Base,0.27,0.19,0.37,-0.224,-0.324,-0.129
145
- AutoARIMA,Stat. Ensemble,0.5,0.4,0.59,0.021,-0.021,0.058
146
- AutoARIMA,AutoARIMA,0.5,0.5,0.5,0.0,0.0,0.0
147
- AutoARIMA,AutoETS,0.685,0.59,0.775,0.381,0.235,0.518
148
- AutoARIMA,AutoTheta,0.75,0.67,0.83,0.169,0.119,0.218
149
- AutoARIMA,Seasonal Naive,0.88,0.825,0.93,0.234,0.184,0.287
150
- AutoARIMA,Naive,0.91,0.85,0.96,0.449,0.389,0.499
151
- AutoARIMA,Drift,0.89,0.82,0.95,0.453,0.393,0.505
152
- AutoETS,Chronos-2,0.05,0.01,0.1,-1.48,-2.169,-0.999
153
- AutoETS,TiRex,0.08,0.03,0.14,-1.261,-1.901,-0.816
154
- AutoETS,TimesFM-2.5,0.1,0.05,0.16,-1.261,-1.898,-0.814
155
- AutoETS,Toto-1.0,0.16,0.09,0.24,-1.198,-1.815,-0.764
156
- AutoETS,TabPFN-TS,0.15,0.08,0.22,-1.242,-1.889,-0.793
157
- AutoETS,Moirai-2.0,0.13,0.07,0.2,-1.158,-1.773,-0.727
158
- AutoETS,Chronos-Bolt,0.13,0.07,0.2,-1.133,-1.742,-0.717
159
- AutoETS,Sundial-Base,0.29,0.21,0.39,-0.945,-1.517,-0.545
160
- AutoETS,Stat. Ensemble,0.245,0.165,0.33,-0.612,-1.072,-0.305
161
- AutoETS,AutoARIMA,0.315,0.225,0.41,-0.616,-1.074,-0.308
162
- AutoETS,AutoETS,0.5,0.5,0.5,0.0,0.0,0.0
163
- AutoETS,AutoTheta,0.57,0.47,0.67,-0.384,-0.762,-0.111
164
- AutoETS,Seasonal Naive,0.625,0.535,0.715,-0.27,-0.651,-0.012
165
- AutoETS,Naive,0.76,0.68,0.84,0.059,-0.228,0.255
166
- AutoETS,Drift,0.79,0.71,0.87,0.062,-0.223,0.256
167
- AutoTheta,Chronos-2,0.02,0.0,0.05,-0.901,-1.124,-0.718
168
- AutoTheta,TiRex,0.05,0.01,0.1,-0.728,-0.919,-0.575
169
- AutoTheta,TimesFM-2.5,0.04,0.01,0.09,-0.73,-0.934,-0.567
170
- AutoTheta,Toto-1.0,0.07,0.03,0.13,-0.676,-0.87,-0.517
171
- AutoTheta,TabPFN-TS,0.06,0.02,0.11,-0.701,-0.889,-0.542
172
- AutoTheta,Moirai-2.0,0.09,0.04,0.15,-0.642,-0.83,-0.491
173
- AutoTheta,Chronos-Bolt,0.04,0.01,0.08,-0.622,-0.804,-0.477
174
- AutoTheta,Sundial-Base,0.23,0.15,0.32,-0.473,-0.641,-0.333
175
- AutoTheta,Stat. Ensemble,0.13,0.07,0.19,-0.178,-0.24,-0.124
176
- AutoTheta,AutoARIMA,0.25,0.17,0.33,-0.203,-0.279,-0.135
177
- AutoTheta,AutoETS,0.43,0.33,0.53,0.278,0.1,0.433
178
- AutoTheta,AutoTheta,0.5,0.5,0.5,0.0,0.0,0.0
179
- AutoTheta,Seasonal Naive,0.69,0.6,0.78,0.078,0.007,0.148
180
- AutoTheta,Naive,0.85,0.78,0.92,0.338,0.277,0.392
181
- AutoTheta,Drift,0.79,0.71,0.87,0.342,0.277,0.399
182
- Seasonal Naive,Chronos-2,0.02,0.0,0.05,-1.063,-1.27,-0.883
183
- Seasonal Naive,TiRex,0.01,0.0,0.04,-0.875,-1.061,-0.724
184
- Seasonal Naive,TimesFM-2.5,0.01,0.0,0.03,-0.877,-1.074,-0.729
185
- Seasonal Naive,Toto-1.0,0.04,0.01,0.08,-0.818,-1.003,-0.658
186
- Seasonal Naive,TabPFN-TS,0.03,0.005,0.065,-0.846,-1.025,-0.7
187
- Seasonal Naive,Moirai-2.0,0.07,0.03,0.13,-0.781,-0.961,-0.632
188
- Seasonal Naive,Chronos-Bolt,0.03,0.0,0.06,-0.76,-0.929,-0.623
189
- Seasonal Naive,Sundial-Base,0.09,0.04,0.15,-0.598,-0.753,-0.474
190
- Seasonal Naive,Stat. Ensemble,0.165,0.105,0.23,-0.279,-0.376,-0.198
191
- Seasonal Naive,AutoARIMA,0.12,0.07,0.175,-0.306,-0.403,-0.225
192
- Seasonal Naive,AutoETS,0.375,0.285,0.465,0.213,0.012,0.394
193
- Seasonal Naive,AutoTheta,0.31,0.22,0.4,-0.085,-0.174,-0.008
194
- Seasonal Naive,Seasonal Naive,0.5,0.5,0.5,0.0,0.0,0.0
195
- Seasonal Naive,Naive,0.685,0.61,0.755,0.281,0.208,0.351
196
- Seasonal Naive,Drift,0.77,0.69,0.86,0.286,0.205,0.362
197
- Naive,Chronos-2,0.02,0.0,0.05,-1.87,-2.255,-1.52
198
- Naive,TiRex,0.01,0.0,0.04,-1.608,-1.963,-1.301
199
- Naive,TimesFM-2.5,0.01,0.0,0.03,-1.611,-1.972,-1.293
200
- Naive,Toto-1.0,0.03,0.0,0.07,-1.53,-1.877,-1.224
201
- Naive,TabPFN-TS,0.03,0.0,0.07,-1.568,-1.912,-1.254
202
- Naive,Moirai-2.0,0.05,0.01,0.1,-1.478,-1.816,-1.178
203
- Naive,Chronos-Bolt,0.02,0.0,0.05,-1.449,-1.767,-1.16
204
- Naive,Sundial-Base,0.09,0.04,0.15,-1.224,-1.535,-0.956
205
- Naive,Stat. Ensemble,0.03,0.0,0.07,-0.779,-0.938,-0.629
206
- Naive,AutoARIMA,0.09,0.04,0.15,-0.816,-0.997,-0.636
207
- Naive,AutoETS,0.24,0.16,0.32,-0.063,-0.343,0.186
208
- Naive,AutoTheta,0.15,0.08,0.22,-0.51,-0.644,-0.383
209
- Naive,Seasonal Naive,0.315,0.245,0.39,-0.391,-0.54,-0.263
210
- Naive,Naive,0.5,0.5,0.5,0.0,0.0,0.0
211
- Naive,Drift,0.84,0.77,0.91,0.007,-0.018,0.028
212
- Drift,Chronos-2,0.02,0.0,0.05,-1.889,-2.297,-1.517
213
- Drift,TiRex,0.03,0.0,0.07,-1.626,-1.992,-1.31
214
- Drift,TimesFM-2.5,0.03,0.0,0.07,-1.629,-2.005,-1.301
215
- Drift,Toto-1.0,0.03,0.0,0.07,-1.547,-1.905,-1.228
216
- Drift,TabPFN-TS,0.05,0.02,0.1,-1.585,-1.953,-1.257
217
- Drift,Moirai-2.0,0.05,0.01,0.1,-1.495,-1.849,-1.182
218
- Drift,Chronos-Bolt,0.02,0.0,0.05,-1.465,-1.797,-1.171
219
- Drift,Sundial-Base,0.12,0.06,0.19,-1.239,-1.572,-0.95
220
- Drift,Stat. Ensemble,0.03,0.0,0.07,-0.791,-0.961,-0.632
221
- Drift,AutoARIMA,0.11,0.05,0.18,-0.828,-1.021,-0.649
222
- Drift,AutoETS,0.21,0.13,0.29,-0.066,-0.344,0.183
223
- Drift,AutoTheta,0.21,0.13,0.29,-0.52,-0.664,-0.384
224
- Drift,Seasonal Naive,0.23,0.14,0.31,-0.401,-0.567,-0.258
225
- Drift,Naive,0.16,0.09,0.23,-0.007,-0.029,0.018
226
- Drift,Drift,0.5,0.5,0.5,0.0,0.0,0.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
tables/pivot_MASE.csv DELETED
@@ -1,101 +0,0 @@
1
- Task name,Chronos-2,TiRex,TimesFM-2.5,Toto-1.0,Moirai-2.0,Chronos-Bolt,TabPFN-TS,Sundial-Base,Stat. Ensemble,AutoARIMA,AutoTheta,AutoETS,Seasonal Naive,Naive,Drift
2
- ETT_15T,0.69485799,0.7187969186000001,0.7295309932,0.7577736165000001,0.7033446670000001,0.7033446670000001,0.7625422865,0.7138930444,0.9168897854,0.9168897854,0.8021815222,1.4293457361000002,0.9168897854,1.3670854222,1.4150881085
3
- ETT_1D,1.3413765239,1.3268087247,1.3611067371,1.3679488602,1.3461045465,1.3461045465,1.4991782178,1.4174248495,1.4122431037,1.4311893424,1.4485203425,1.437554375,1.4915469632,1.4615227122,1.493070532
4
- ETT_1H,1.1259593877,1.1177931379,1.1239074995,1.1128977698,1.126722477,1.126722477,1.1773747941,1.1439289261,1.2518551239,1.2616150196,1.284690664,1.6020946418,1.3227159047,1.7184142013,1.7823323561
5
- ETT_1W,2.6985269137,2.6203818352,2.6215325512,2.6388480518,2.6260535479,2.6260535479,2.8095121652,2.7153947044,2.6874358146,2.7471493707,2.8368188855,2.6393182441,2.6201185499,2.6201185499,2.7818783534
6
- LOOP_SEATTLE_1D,0.9599506681,0.9691232143,0.9509504834,1.0267654131,0.9859320366,0.9859320366,0.9622221749,0.9847669395,0.9983198527,0.9888675362,1.0222727765,1.0016712996,1.1753801207,2.1046903302,2.373789824
7
- LOOP_SEATTLE_1H,0.7939256103000001,0.8196171978,0.7539313166,0.8716561378000001,0.9188719391,0.9188719391,0.8527195266,0.9012445092,1.3516779911,1.3516779911,1.1797622806,1.6371768899,1.3516779911,1.7163837446,1.9650972819
8
- LOOP_SEATTLE_5T,0.6812013579,0.6919744542,0.7344527308000001,0.6999688034,0.8058940043,0.8058940043,0.7953950095000001,0.7671902281,0.9579580055,0.9670797236,0.9937342132,0.9723147042,0.8255932621000001,1.0149350727,1.1722532487
9
- M_DENSE_1D,0.772147294,0.9065688429,0.8575514804000001,1.0278691722,0.9249126529,0.9249126529,0.9194900606,0.8999893558000001,1.050932514,1.168959753,1.0771913138,1.0868806507,1.3500254954,1.72924802,1.7668414689
10
- M_DENSE_1H,0.7132003866000001,0.7118568012000001,0.6693472657,0.7547859889,0.7173406545000001,0.7173406545000001,0.7953014020000001,0.775167995,1.1917704339,1.1833753219,1.4265921364,1.4834949349,1.2398526574,2.9336598204,3.2462087048
11
- SZ_TAXI_15T,0.4999875771,0.5028743392,0.5037458638,0.5100538324,0.5100343925,0.5100343925,0.5231892934,0.5133618160000001,0.6992652752,0.6992652752,0.5704736672,0.6812952229,0.6992652752,0.7537395688,0.7757872137
12
- SZ_TAXI_1H,0.4878765553,0.4985809825,0.5174781061,0.4938355877,0.5054399823,0.5054399823,0.5369530543000001,0.6129421994,0.5582147152,0.6365009349,0.7816119684,1.6334537315,0.6288121204,0.7531606604000001,0.8861734094
13
- australian_tourism,0.8548583034,0.9757973332,0.9190089649,1.1349816052,1.1608053998,1.167418807,0.8868052992000001,0.9146409764,0.9323052664,1.0124394981,1.0449349521,0.9667110204,1.0994521146,1.5829350567,1.7960279922
14
- bizitobs_l2c_1H,0.3841207893,0.4680641032,0.4101674728,0.4671656853,0.4308821616,0.4308821616,0.4458486692,0.4647078621,0.7567537453000001,0.7748607972,0.7957254005000001,0.8231641016,1.0658712657,0.7707155721000001,0.7758078113
15
- bizitobs_l2c_5T,0.5169198847,0.7958700059,0.5787129625,0.7135649119,0.8001548681,0.8001548681,0.6193328173,0.4807818165,0.8068916121,0.9163295742,0.8740253941,0.8137418066000001,1.0666676717,0.7577504543,0.9386117981
16
- boomlet_1062,0.6776941572,0.6804959751,0.6916399154,0.669096311,0.7155932877000001,0.7110111948000001,0.6864002083,0.7574670104,1.0019575039,0.9510023935,1.0704423896,1.0502749806,0.9949683457,1.307870931,1.422512019
17
- boomlet_1209,0.798770705,0.8520639537,0.8179153246,0.7440166652,0.8596275988000001,0.8460080897000001,1.107972646,0.8887982072,1.0454166675,1.0378800323,1.1056064071,1.1827230135,1.1827230135,1.0545734336,1.2621289177
18
- boomlet_1225,0.232250887,0.2338512692,0.2365234795,0.2291020931,0.2436207845,0.2540221924,0.2509252394,0.2531870103,0.2904167694,0.2751876371,0.3003114491,0.3006939878,0.3736491907,0.3736491907,0.38068424
19
- boomlet_1230,1.3704917337,1.3783150604,1.3669883226,1.2932815419,1.4190498379,1.347504774,1.6398564855000002,1.4532188179,1.5513275237,1.5864985932,1.5854205097,1.7204862029,1.8986209303,1.563197,1.7478394522
20
- boomlet_1282,0.5228616857,0.4966357089,0.4938256811,0.4982816626,0.5229602404,0.5646901456,0.506661869,0.5169242862,0.6397695821,0.5924898465,0.6909553164000001,0.6889630667000001,0.8299194032,0.8299194032,0.8508297266
21
- boomlet_1487,0.5106600333,0.5187314221,0.5025569448,0.4821270726,0.5276634634,0.5268262285,0.6139593947,0.5573472172,0.6620511075000001,0.6561515279,0.6861485358,0.6618622173,0.7188988334,0.7369858245,0.8583652247
22
- boomlet_1631,0.7130379866000001,0.7478094028000001,0.7223220370000001,0.7231858750000001,0.7328154067,0.7407561889000001,0.8463187427000001,0.7619771372,0.9935726652,0.9935726652,0.7886354003,0.7850787279,0.9935726652,0.8639891085,0.8923058214
23
- boomlet_1676,0.7074172691,0.7093011606,0.6981823962,0.6906502502,0.7128114239000001,0.7192465308,0.958687274,0.7138061614,0.952905272,0.952905272,0.7772233453,0.7609898935,0.952905272,0.8198719238000001,0.8566079879
24
- boomlet_1855,0.5381849677,0.5278191175,0.5502667915,0.5280890902,0.543045447,0.5502545471,0.6402148315,0.59756436,0.7137233958,0.7334421170000001,0.7479719187,0.7732640618000001,0.8339307546,0.680593968,0.6861913673000001
25
- boomlet_1975,0.160743225,0.2344681763,0.2045403051,0.149489781,0.2722386223,0.2157351982,0.2447173505,0.2358591523,0.5885200818,0.6455594326,0.5697333157000001,0.6992926357,0.9041727794,0.6991117215,0.7004386998000001
26
- boomlet_2187,0.8118519892,0.8085306304000001,0.8936367348,0.881456274,0.9069913111,0.878419842,1.0030305987,0.9507442206,1.18136692,1.2812206603,1.2716040444,1.2537471952,1.3439772563,1.15749623,1.1700732484
27
- boomlet_285,0.3587658722,0.4007113979,0.4216519838,0.3609691019,0.470509393,0.5250469024000001,0.3931546055,0.5605665968,0.7526380608000001,0.7883015466000001,0.7305756426000001,0.8132574193000001,1.2487633378,1.2487633378,1.2792135195
28
- boomlet_619,0.4234249096,0.4418338294,0.4363557101,0.403240616,0.4306276617,0.5940973904,0.4305322873,0.435636804,1.0046773699,0.7170247042,1.0200015813,1.0937660371,1.1235570145,1.1235570145,1.1484320675
29
- boomlet_772,0.331309463,0.3435360993,0.3429964064,0.3279337304,0.3651670055,0.3956163828,0.3608040826,0.3920487456,0.5801758985000001,0.5361147759,0.6163309557000001,0.6702469495000001,0.6290173275000001,0.6290173275000001,0.6468050268000001
30
- boomlet_963,0.8390323316,0.8276719248000001,0.8600331800000001,0.8253396814,0.8725943582000001,0.8956312939000001,0.8758112548,0.849173272,1.1173343797,1.1099255146,1.1004605986,1.2932431478,1.1186074012,1.1186074012,1.1367798246
31
- ecdc_ili,2.7551221041,2.8841261459,2.6316220318,3.0233475859,2.9286752636,3.1427261211,2.8110944773,3.0367688213,4.3217227901,4.1963805493,4.2528905756,4.5974303581,4.1680850656,4.1680850656,4.3553339847
32
- entsoe_15T,0.584613927,0.5986061889000001,0.5903166384,0.7502653602,0.5933312818,0.6061735307,0.6094490505,0.7577799507,0.9314587074,0.9314587074,0.7298063048,4.0070290526,0.9314587074,1.9045500461,2.0547959624
33
- entsoe_1H,0.5379602267,0.585380389,0.5848723966,0.5907812391,0.5924217639,0.556447549,0.5377189816,0.8117895189000001,1.1144887827,1.1176425426,1.1626008244,2.0475241128,1.1014887222,2.0553481854,2.1575810109
34
- entsoe_30T,0.5438155024,0.6645923404,0.6957880272,0.6254143824,0.5973972755,0.6326216104,0.6350493808000001,0.7796412031000001,1.0577908951,1.2299298482,1.0040370692,3.2738378374,1.2161814769,2.0733355971,2.0462297626
35
- epf_be,0.6470253095,0.6743990368,0.6101898021000001,0.7065052879,0.6709379406,0.7272945434,0.6701844387,0.7222255864,0.9813953164,1.0947820348,1.0193650689,1.3929299519,1.0270532112,1.3609414277,1.3744478654
36
- epf_de,0.6042262391000001,1.2971032281,1.2798889483,1.3369704527,1.2281783328,1.2655265893,0.5674762585,1.3227461317,1.3821017935,1.6231053542,1.407198376,1.741711499,1.7085955085,1.7417240476,1.7695511326000002
37
- epf_fr,0.4500648874,0.5040405462,0.4906901724,0.5253012985000001,0.5034595344,0.5638378752000001,0.4181703173,0.5243569292,0.7410301647,0.988839379,0.8447495724,0.9665291295,0.8501188428,1.160344512,1.1771067225
38
- epf_np,0.8501927354000001,1.22255132,1.4402381231,1.3589475358,1.1997562864,1.2409440197,0.8709423510000001,1.0947012554,1.514694987,1.7096191588,1.514020593,2.3244018164,1.7613036184,2.3154975383,2.3147871788
39
- epf_pjm,0.4718976596,0.5057793683,0.5310653587,0.5821871052,0.5630774342,0.5357283349,0.5339815846,0.5214143203,0.5294817721,0.5572886801,0.6832480189,0.9847286701,0.581167898,0.9849340527,0.9983941216
40
- ercot_1D,1.1382701552,1.0650322509,1.068637649,1.1712118632,1.2043414824,1.150459162,1.2627737925,1.1023893836,1.5207401049,1.3979692163,1.5801931826,1.5952697559,1.5987746508,1.5840542166,1.5904988169
41
- ercot_1H,1.3575339616,1.3770443905,1.4902437934,1.4168899965,1.3940551857,1.3914155571,1.5551131815,1.4647042938,1.610467295,1.4621684481,1.5835893744,3.196839145,1.5757631018,3.1089998641,3.1208481544
42
- ercot_1M,0.9503422118,1.0121701532,0.9788665964,1.2709588716,1.2434972767,0.9921791164,1.2288572299,1.0612308441,0.9720301101,0.9971198091,1.2051001185,0.9527701547,1.112833491,4.4343715733,4.8730234607
43
- ercot_1W,1.2194617137,1.2277888798,1.1887344162,1.3470027368,1.3362468506,1.2261966297,1.6253611467,1.4770568791,2.6623042168,2.6323348127,2.66207578,2.6788985082,2.6319098716,2.6319098716,2.6294908648
44
- favorita_stores_1D,1.1401981362,1.1934094375,1.1675502677,1.2803612723,1.2046882591,1.2688834676,1.1942878338,1.2200293401,1.3400112075,1.4187797295,1.3758675565,1.3798606395,1.7590444116,1.8830413748,1.8964809396
45
- favorita_stores_1M,1.9752000518,2.2147063817,2.2337935781,2.2864924589,2.3235561779,2.4178143615,2.1757603336,2.4060388473,2.1181450497,2.207495882,2.1335008012,2.1221172271,2.2823009488,1.9974006051,2.0640825589
46
- favorita_stores_1W,2.2987284037,2.4234607638,2.2900534378,2.5080339706,2.5772702404,2.4748929287,2.5267645799,2.561243423,2.433980351,2.580066785,2.4768022229,2.5164520445000003,2.5171133578,2.5171133578,2.55263811
47
- favorita_transactions_1D,0.8493704997,1.3492617128,1.1514968036,1.1514968036,1.1514968036,1.1514968036,1.6727335501,1.324712294,1.2657781225,1.7409399844,1.2511063806,1.2765051213,1.820047183,1.8618151915,1.8593809033
48
- favorita_transactions_1M,1.2531106859,1.3596174423,1.331599249,1.6656037195,1.6105440091,1.6365070781000002,1.4261630874,1.6184833791000002,1.3044406101,1.4642003185,1.4898451778,1.3424992981,1.5197338218,1.4299319146,1.6051275429
49
- favorita_transactions_1W,1.498824674,1.7464561746,1.7479484715,1.9303724027,1.6846164482,1.7479484715,2.436781004,2.0992640534,1.6323769125,1.7908498043,1.7230820362,1.6826500128,1.5401800863,1.5401800863,1.6333667243
50
- fred_md_2025/cee,4.1602413715,3.9913296592,5.4995170613,5.4995170613,5.4995170613,5.4995170613,4.6737821611,5.6396642877000005,4.1492831073,6.3656916747,4.7268175598,4.1316582891,11.870151993,6.7148852073,4.6902098373
51
- fred_md_2025/macro,6.7212229021,6.2436277327,6.8925263969,6.8925263969,6.8925263969,6.8925263969,7.7467550529,6.9855690276,6.4760151224,7.2903875617,6.7085954414,6.5541834396,11.2729488966,7.1693509539,6.6706675334
52
- fred_qd_2025/cee,2.7861573589,2.5007210568,2.5230363656,2.1472810882,2.7932979017,2.9552801855,2.9044098381000003,4.1237296063,2.2117006108,2.3066503643000003,2.5784767122,2.4969928698,5.7264703884,4.3666041366,2.5885780238
53
- fred_qd_2025/macro,4.2345765547,4.2532915346,4.2312964035,4.0310227379,4.3026427477,4.4204306869,5.2932799619,5.0800217147,4.2291679217,4.4837099549,4.4089305862,4.4466602526,6.2532543175,4.9115310592,4.3735327936
54
- gvar,0.7105251571,0.7074487020000001,0.7192074299,0.7017595921,0.7279795748,0.7294646076,0.9010948704,0.8613958999,0.6831004748,0.7032889301,0.6996326439,0.7021303869000001,0.9186013653,0.7430842013000001,0.6965206846
55
- hermes,0.7761148308,0.8309937727000001,0.7871785508,1.2023433786,0.8853610442000001,0.8579267331,0.9123318673,0.959480348,1.8121264962,1.5317415273,1.8477529328,1.9852238872,1.9945193434,1.9945193434,2.0472163243
56
- hierarchical_sales_1D,0.6889480354,0.6853563806,0.6882027162000001,0.6820968126,0.6860304896,0.6860304896,0.7080055758,0.7291028689,0.8130155521,0.7735716427,0.8693462262,0.8639978187,0.9949475154,1.0417563414,1.0525564501
57
- hierarchical_sales_1W,0.7539268452,0.756678049,0.7507699991,0.7789897858,0.7733116574000001,0.7733116574000001,0.7740136921,0.8055524179,0.9004451123,0.9125112599,0.9154643589,1.0341883947,1.1617080217,1.1617080217,1.1894416421
58
- hospital,0.8734575253,0.8749408193,0.8629412822,0.9208820395,0.8888399515000001,0.8888399515000001,0.8808779374,0.9575868855,0.8766229998,0.9191221959,0.9215507227,0.9080008209,1.0188066511,1.10504708,1.1736654928
59
- hospital_admissions_1D,0.7170504398,0.717979448,0.7193032164000001,0.7172821424,0.7187636137000001,0.7195191066000001,0.7244514742,0.7225061727000001,0.7213815906000001,0.7209334531,0.7428646667000001,0.7211231617,1.0268297216,0.9746856833,0.9816293494
60
- hospital_admissions_1W,0.7508052537000001,0.7609831368000001,0.7544838609000001,0.7781410151,0.7643243630000001,0.7622844235,0.7534416615,0.7598582682,0.7551866274,0.7540567649000001,0.7779256247,0.7540854723,1.0436412698,1.0436412698,1.0831848605
61
- jena_weather_10T,0.4309090205,0.4789954609,0.4373143782,0.4522280598,0.4805248693,0.4805248693,0.516391649,0.4900412345,0.7300235109000001,0.7300235109000001,0.4933654141,0.6119521222000001,0.7300235109000001,0.52703557,0.5533241331000001
62
- jena_weather_1D,1.4035573001,1.366539178,1.3763415621,1.411132821,1.3722903668,1.3722903668,1.4445769356,1.4276462192,1.5642224637000002,1.5277037002,1.6406694179,1.8504210406,1.8965701168,1.6994317303000002,1.7748810582
63
- jena_weather_1H,0.4373910058,0.437909858,0.4392356659,0.4476285627,0.4542878163,0.4542878163,0.5111184304,0.4459427668,0.4663908322,0.5091821891,0.4846005807,0.567832109,0.7399001552000001,0.5374935394,0.544552084
64
- kdd_cup_2022_10T,0.5199209021,0.5903298173,0.5903298173,0.5903298173,0.5903298173,0.5903298173,0.6951920674000001,0.5903298173,0.8187009928000001,0.8187009928000001,0.8117980851000001,0.7837343985,0.8187009928000001,0.7815687018,0.8809057293
65
- kdd_cup_2022_1D,0.8993091790000001,0.8990205149,0.8934942013,0.8967645421,0.9125687218,0.9069594704,0.9150751748,0.9235145261,0.9701127541,0.9552154519,0.9764039863,0.9888169951,1.0844353298,1.0306171345,1.0552765612
66
- kdd_cup_2022_30T,0.5419431132,0.5339588215000001,0.6348935773000001,0.5309168604,0.5156770351000001,0.6672184767,0.6765431227,0.5884124519,0.7681145469,0.7706658108000001,0.8416018012,0.8428842456000001,0.8221839563000001,0.8375670849,0.8782613104
67
- m5_1D,0.8805311862,0.8753446971000001,0.8851788247,0.8851788247,0.8851788247,0.8851788247,1.2236286692,0.9677992163,1.2236286692,1.0630838856,1.0805686532,1.0632996272,1.2236286692,1.3575007837,1.3783870781
68
- m5_1M,1.1638225847,1.1629101784,1.1576052027,1.2421800194,1.1773037824,1.1852216988,1.1871283177,1.199580668,1.1819548335,1.2131357033,1.2589934317,1.2139006267,1.3266370526,1.2671440715,1.3915794965
69
- m5_1W,1.140035557,1.1476955468,1.1647431618,1.1448252405,1.1500678738,1.1647431618,1.1604987437,1.1330759513,1.151797309,1.1567620351,1.1697733846,1.1672033988,1.3382424884,1.3382424884,1.3824089509
70
- proenfo_gfc12,0.8120010722000001,1.1241553096,1.0781317629,1.0781317629,1.0781317629,1.0781317629,1.0338246822,0.9935522058,1.5463300248,1.3848285732,1.5236522096,2.8114372878,1.428177457,2.6291046656,2.7528132313
71
- proenfo_gfc14,0.5386865885000001,0.9119046182,0.9285112769,0.9285112769,0.9285112769,0.9285112769,0.6406314316,0.463580052,1.1044049767,1.1681324943,1.185656643,1.3185527521,1.1988543772,3.7072504144,3.965045322
72
- proenfo_gfc17,0.6103925032,1.1380901313,1.0977005202,1.0977005202,1.0977005202,1.0977005202,0.8553343104000001,0.5526319982,1.4215223964,1.3821477017,1.3687323787,2.4127647331,1.5845048132,2.9066491955,3.063129907
73
- redset_15T,0.932090844,1.0022286368,0.8687945356000001,0.9533624543,1.1189004499,1.4783946982,2.1719934434,1.3649343142,1.0323384841,1.0323384841,1.597597259,1.0323384841,1.0323384841,32.0340548113,33.693269119600004
74
- redset_1H,1.5030009123,1.4573336789,1.4842036779,1.4166961403,1.5362745519,2.6712489552000003,1.4385006498,1.5646420584,1.761972427,1.8532418262,2.0202444582,2.2287068299,1.6826194185,8.1555516024,8.1864715752
75
- redset_5T,0.7864618582,0.9453718328,0.8482881600000001,0.8563860838,0.9344199171,1.1699231408,0.8423602104,1.0328105291,2.1640102467,2.0719155469,2.3397807513,1.0410587245,1.0410587245,3.1480546918,3.498018604
76
- restaurant,0.8599089924000001,0.8522179843000001,0.8503096514,0.8858745474,0.8659689945,0.8659689945,0.8689264082,0.8630231098000001,0.8717386477,0.9400606666,0.9184892419,0.9391232286,1.1194990361,1.3993248163,1.4760866124
77
- rohlik_orders_1D,1.1869082034,1.2033753235,1.2504095981,1.3775879584,1.176067019,1.3016096527,1.547892006,1.3992895671,1.3812243729,1.5623634243,1.5185276042,1.4870315996,1.7782872152,2.4354371077,2.4953294972
78
- rohlik_orders_1W,1.5470873372,1.5828643626,1.6591862082,1.7980310562,1.8740325635,1.7219242334,1.9886917666,2.0951936703,1.71276995,1.7324467216,1.7121743288,1.7583263983,1.7311823321,1.7311823321,1.7566346002
79
- rohlik_sales_1D,1.1015615434,1.3844809879,1.3237942192,1.4539084863,1.4020532381,1.3870630122,1.6150435602000002,1.3442522277,1.4759756392,1.5092369137,1.4939231302,1.4985533338,1.6150435602000002,1.7485285579,1.7665358583000002
80
- rohlik_sales_1W,1.5596721638000002,1.7354311654,1.6890705942,1.8031174582,1.8214908337,1.8466635227,1.5204800642,1.8996288065,1.8249729553,2.03785374,1.8363584706,1.8899729917,1.9154827568,1.9154827568,1.990816422
81
- rossmann_1D,0.3557646152,0.6600669122,0.6105528999000001,0.6814055866000001,0.6480208978,0.6371181918000001,0.2944517637,0.6154624197,0.6678317895,0.6544020781000001,0.7447792464,0.6912520753,0.7885548119,1.6195142378,1.6307564391
82
- rossmann_1W,0.3711869945,0.6218198341,0.654277349,0.6318509753,0.6439797931,0.6451761650000001,0.3046311863,0.6790382249,0.6512769978,0.6688824183000001,0.6643635235,0.6684782378,0.7960291356,0.7960291356,0.8779634547
83
- solar_1D,0.7564704595,0.7780027014,0.7870867805,0.7929503108,0.8134821640000001,0.8068081935,0.7848225151,0.7866198335,0.7950641496,0.8072395918,0.8376174094000001,0.8017773736,0.9900696291,0.9666968847,1.1102918555
84
- solar_1W,1.1789594159,1.5031298228,1.4613966872000002,1.798309645,2.0395669896,1.2719881759,1.0931583831,1.1001413936,1.7922537528,1.7335090246,2.0936290706,1.6267514936,1.9187253475,1.9187253475,2.5896105932
85
- solar_with_weather_15T,0.8640997518,1.0486903807,1.1152651553,0.9403149212,1.0763836253,0.9765226278,0.9444749979,1.1181879294,1.0500997059,1.0500997059,1.2728696954,2.4161932928,1.0500997059,1.989464318,2.2100824084
86
- solar_with_weather_1H,1.020146174,1.1582715132,1.0512633641,1.0585275477,1.1358492836,1.0720382243,0.8628512004000001,1.3031564924,1.3147978753,1.1133137476,1.5354303629,2.2682380188,1.0619359164,2.2682071361,2.2668539311
87
- uci_air_quality_1D,1.3132142922,1.4312317693,1.5147124464,1.5881022678,1.4417059353,1.3886570934,1.5308266811,1.3990875663,1.3836855571,1.5585347706,1.4428092347,1.3629041949,1.7337243007,2.1090746157,2.2085178759
88
- uci_air_quality_1H,1.0205968913,1.1061991604,1.1225931257,1.1111893485,1.196474258,1.1161574722,1.1751368971,1.1924183278,1.2991890754,1.3697649929,1.3457656206,10.6979097385,1.4424742241,1.681575288,1.7613798983
89
- uk_covid_nation_1D/cumulative,9.4467008809,8.929376688,7.9247162242,7.7416129012,8.1949951543,10.4547608004,16.8706126207,18.3255496813,8.8341213691,9.559789598,20.1075262656,8.1052795609,30.7671471585,25.4400086758,18.9781830611
90
- uk_covid_nation_1D/new,2.5004449077,2.3835910907,2.5834199323,2.4705193977,2.5489344845,2.5913882505,2.5101268505,2.5802902251,3.1171908684,4.1917555777,2.8839990291,3.0620508133,2.8996526561,2.9050530888,2.9572817188
91
- uk_covid_nation_1W/cumulative,3.5475301481,3.609263087,5.0226305819,3.6488116454,3.6495679007,4.3362420429,3.1721656359,5.8508558031,2.5352192342,10.5120021053,5.7016692031,2.8531029011,8.7736590065,8.7736590065,5.5370707385
92
- uk_covid_nation_1W/new,6.281728984,5.4013881506,4.6024864277,6.3940786735,4.5611907188,5.1432817198,4.8064190531,4.2487016855,6.252228662,13.5408520302,5.813977235,6.0384476605,5.8035952813,5.8035952813,6.0322653616
93
- uk_covid_utla_1D/new,4.545983792,4.4705040881,4.1803353814,4.8383241752,4.2104220413,4.2680470788,4.582072345,4.1215258287,6.2345012475,8.1828726428,5.820038846,6.304086527,5.2400849649,5.9561884523,6.0662829111
94
- uk_covid_utla_1W/cumulative,19.8762833001,21.7652806241,21.5163025658,18.8192829039,21.8269429168,20.0769214614,19.7677867998,27.7918750277,15.8503479662,15.7434113202,21.4127050868,17.1124689005,26.0772211706,26.0772211706,20.9787577016
95
- us_consumption_1M,1.7363780834,1.7646639097,1.931250606,1.8634380437,1.7680304079,1.8462616555,1.8857443126,2.1034739353,1.7231034056,1.8263458048,1.9291138764,1.7093004134,3.1370276717,2.1549055801,1.9442203469
96
- us_consumption_1Q,2.1646931617,2.2808950609,2.3646254512,2.1108276882,2.2065057075,2.2129312479,3.7648783035,3.2110317266,2.2422219291,2.3510275878,2.6435650081,2.2553091192,3.8594112114,2.9276892853,2.513273914
97
- us_consumption_1Y,4.5651597874,4.5542723191,4.8010821783,4.7990321771,5.8237789501,5.0426493832,5.0551837428,6.4807387204,4.453578755,4.2587442225,5.619694319,4.7574382247,7.3594854558,7.3594854558,5.51566537
98
- walmart,0.8167399666,0.8862297442,0.8614820536000001,1.1257617414,1.0559167299,0.9670980075,0.8317842871000001,0.9842192099,1.3563890452,1.2473824838,1.4178781632000002,1.7226801126,1.5240930953,1.5240930953,1.7491246911
99
- world_co2_emissions,3.2534412006,3.218938845,3.4342160899,3.2426033895,3.4946390667,3.3725385277,3.2702702323,4.0694291919,3.1762491991,3.3062345239,3.2294516112,3.2990698517,3.6978220012,3.6978220012,3.1983782167
100
- world_life_expectancy,1.4501893466,1.3385484305,1.4011006524,2.0742068807,2.147670042,1.6264414789,1.3478888107,1.7987773288,1.5403532831,1.4974247187,1.7124546782,1.5355990211,2.2537764593,2.2537764593,1.8420117568
101
- world_tourism,3.7800260471,3.8100716189,4.1100857021,3.7867597144,3.9098929656,3.9050210198,3.3270326033,4.7392839763,3.0020746256,3.0968725539,2.9312038042,3.4851749726,3.8281690603,3.8281690603,2.8785102461000003
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
tables/pivot_MASE_baseline_imputed.csv DELETED
@@ -1,101 +0,0 @@
1
- Task name,Chronos-2,TiRex,TimesFM-2.5,Toto-1.0,Moirai-2.0,Chronos-Bolt,TabPFN-TS,Sundial-Base,Stat. Ensemble,AutoARIMA,AutoTheta,AutoETS,Seasonal Naive,Naive,Drift
2
- ETT_15T,False,False,False,False,False,False,False,False,True,True,False,False,False,False,False
3
- ETT_1D,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
4
- ETT_1H,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
5
- ETT_1W,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
6
- LOOP_SEATTLE_1D,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
7
- LOOP_SEATTLE_1H,False,False,False,False,False,False,False,False,True,True,False,False,False,False,False
8
- LOOP_SEATTLE_5T,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
9
- M_DENSE_1D,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
10
- M_DENSE_1H,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
11
- SZ_TAXI_15T,False,False,False,False,False,False,False,False,True,True,False,False,False,False,False
12
- SZ_TAXI_1H,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
13
- australian_tourism,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
14
- bizitobs_l2c_1H,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
15
- bizitobs_l2c_5T,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
16
- boomlet_1062,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
17
- boomlet_1209,False,False,False,False,False,False,False,False,False,False,False,True,False,False,False
18
- boomlet_1225,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
19
- boomlet_1230,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
20
- boomlet_1282,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
21
- boomlet_1487,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
22
- boomlet_1631,False,False,False,False,False,False,False,False,True,True,False,False,False,False,False
23
- boomlet_1676,False,False,False,False,False,False,False,False,True,True,False,False,False,False,False
24
- boomlet_1855,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
25
- boomlet_1975,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
26
- boomlet_2187,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
27
- boomlet_285,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
28
- boomlet_619,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
29
- boomlet_772,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
30
- boomlet_963,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
31
- ecdc_ili,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
32
- entsoe_15T,False,False,False,False,False,False,False,False,True,True,False,False,False,False,False
33
- entsoe_1H,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
34
- entsoe_30T,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
35
- epf_be,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
36
- epf_de,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
37
- epf_fr,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
38
- epf_np,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
39
- epf_pjm,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
40
- ercot_1D,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
41
- ercot_1H,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
42
- ercot_1M,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
43
- ercot_1W,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
44
- favorita_stores_1D,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
45
- favorita_stores_1M,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
46
- favorita_stores_1W,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
47
- favorita_transactions_1D,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
48
- favorita_transactions_1M,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
49
- favorita_transactions_1W,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
50
- fred_md_2025/cee,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
51
- fred_md_2025/macro,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
52
- fred_qd_2025/cee,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
53
- fred_qd_2025/macro,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
54
- gvar,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
55
- hermes,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
56
- hierarchical_sales_1D,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
57
- hierarchical_sales_1W,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
58
- hospital,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
59
- hospital_admissions_1D,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
60
- hospital_admissions_1W,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
61
- jena_weather_10T,False,False,False,False,False,False,False,False,True,True,False,False,False,False,False
62
- jena_weather_1D,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
63
- jena_weather_1H,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
64
- kdd_cup_2022_10T,False,False,False,False,False,False,False,False,True,True,False,False,False,False,False
65
- kdd_cup_2022_1D,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
66
- kdd_cup_2022_30T,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
67
- m5_1D,False,False,False,False,False,False,True,False,True,False,False,False,False,False,False
68
- m5_1M,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
69
- m5_1W,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
70
- proenfo_gfc12,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
71
- proenfo_gfc14,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
72
- proenfo_gfc17,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
73
- redset_15T,False,False,False,False,False,False,False,False,True,True,False,True,False,False,False
74
- redset_1H,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
75
- redset_5T,False,False,False,False,False,False,False,False,False,False,False,True,False,False,False
76
- restaurant,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
77
- rohlik_orders_1D,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
78
- rohlik_orders_1W,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
79
- rohlik_sales_1D,False,False,False,False,False,False,True,False,False,False,False,False,False,False,False
80
- rohlik_sales_1W,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
81
- rossmann_1D,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
82
- rossmann_1W,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
83
- solar_1D,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
84
- solar_1W,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
85
- solar_with_weather_15T,False,False,False,False,False,False,False,False,True,True,False,False,False,False,False
86
- solar_with_weather_1H,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
87
- uci_air_quality_1D,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
88
- uci_air_quality_1H,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
89
- uk_covid_nation_1D/cumulative,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
90
- uk_covid_nation_1D/new,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
91
- uk_covid_nation_1W/cumulative,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
92
- uk_covid_nation_1W/new,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
93
- uk_covid_utla_1D/new,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
94
- uk_covid_utla_1W/cumulative,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
95
- us_consumption_1M,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
96
- us_consumption_1Q,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
97
- us_consumption_1Y,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
98
- walmart,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
99
- world_co2_emissions,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
100
- world_life_expectancy,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
101
- world_tourism,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
tables/pivot_MASE_leakage_imputed.csv DELETED
@@ -1,101 +0,0 @@
1
- Task name,Chronos-2,TiRex,TimesFM-2.5,Toto-1.0,Moirai-2.0,Chronos-Bolt,TabPFN-TS,Sundial-Base,Stat. Ensemble,AutoARIMA,AutoTheta,AutoETS,Seasonal Naive,Naive,Drift
2
- ETT_15T,False,False,False,False,True,False,False,False,False,False,False,False,False,False,False
3
- ETT_1D,False,False,False,False,True,False,False,False,False,False,False,False,False,False,False
4
- ETT_1H,False,False,False,False,True,False,False,False,False,False,False,False,False,False,False
5
- ETT_1W,False,False,False,False,True,False,False,False,False,False,False,False,False,False,False
6
- LOOP_SEATTLE_1D,False,False,False,False,True,False,False,False,False,False,False,False,False,False,False
7
- LOOP_SEATTLE_1H,False,False,False,False,True,False,False,False,False,False,False,False,False,False,False
8
- LOOP_SEATTLE_5T,False,False,False,False,True,False,False,False,False,False,False,False,False,False,False
9
- M_DENSE_1D,False,False,False,False,True,False,False,False,False,False,False,False,False,False,False
10
- M_DENSE_1H,False,False,False,False,True,False,False,False,False,False,False,False,False,False,False
11
- SZ_TAXI_15T,False,False,False,False,True,False,False,False,False,False,False,False,False,False,False
12
- SZ_TAXI_1H,False,False,False,False,True,False,False,False,False,False,False,False,False,False,False
13
- australian_tourism,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
14
- bizitobs_l2c_1H,False,False,False,False,True,False,False,False,False,False,False,False,False,False,False
15
- bizitobs_l2c_5T,False,False,False,False,True,False,False,False,False,False,False,False,False,False,False
16
- boomlet_1062,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
17
- boomlet_1209,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
18
- boomlet_1225,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
19
- boomlet_1230,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
20
- boomlet_1282,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
21
- boomlet_1487,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
22
- boomlet_1631,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
23
- boomlet_1676,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
24
- boomlet_1855,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
25
- boomlet_1975,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
26
- boomlet_2187,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
27
- boomlet_285,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
28
- boomlet_619,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
29
- boomlet_772,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
30
- boomlet_963,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
31
- ecdc_ili,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
32
- entsoe_15T,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
33
- entsoe_1H,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
34
- entsoe_30T,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
35
- epf_be,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
36
- epf_de,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
37
- epf_fr,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
38
- epf_np,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
39
- epf_pjm,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
40
- ercot_1D,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
41
- ercot_1H,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
42
- ercot_1M,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
43
- ercot_1W,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
44
- favorita_stores_1D,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
45
- favorita_stores_1M,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
46
- favorita_stores_1W,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
47
- favorita_transactions_1D,False,False,True,True,True,False,False,False,False,False,False,False,False,False,False
48
- favorita_transactions_1M,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
49
- favorita_transactions_1W,False,False,True,False,False,False,False,False,False,False,False,False,False,False,False
50
- fred_md_2025/cee,False,False,True,True,True,False,False,False,False,False,False,False,False,False,False
51
- fred_md_2025/macro,False,False,True,True,True,False,False,False,False,False,False,False,False,False,False
52
- fred_qd_2025/cee,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
53
- fred_qd_2025/macro,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
54
- gvar,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
55
- hermes,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
56
- hierarchical_sales_1D,False,False,False,False,True,False,False,False,False,False,False,False,False,False,False
57
- hierarchical_sales_1W,False,False,False,False,True,False,False,False,False,False,False,False,False,False,False
58
- hospital,False,False,False,False,True,False,False,False,False,False,False,False,False,False,False
59
- hospital_admissions_1D,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
60
- hospital_admissions_1W,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
61
- jena_weather_10T,False,False,False,False,True,False,False,False,False,False,False,False,False,False,False
62
- jena_weather_1D,False,False,False,False,True,False,False,False,False,False,False,False,False,False,False
63
- jena_weather_1H,False,False,False,False,True,False,False,False,False,False,False,False,False,False,False
64
- kdd_cup_2022_10T,False,True,True,True,True,False,False,True,False,False,False,False,False,False,False
65
- kdd_cup_2022_1D,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
66
- kdd_cup_2022_30T,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
67
- m5_1D,False,False,True,True,True,False,False,False,False,False,False,False,False,False,False
68
- m5_1M,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
69
- m5_1W,False,False,True,False,False,False,False,False,False,False,False,False,False,False,False
70
- proenfo_gfc12,False,False,True,True,True,False,False,False,False,False,False,False,False,False,False
71
- proenfo_gfc14,False,False,True,True,True,False,False,False,False,False,False,False,False,False,False
72
- proenfo_gfc17,False,False,True,True,True,False,False,False,False,False,False,False,False,False,False
73
- redset_15T,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
74
- redset_1H,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
75
- redset_5T,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
76
- restaurant,False,False,False,False,True,False,False,False,False,False,False,False,False,False,False
77
- rohlik_orders_1D,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
78
- rohlik_orders_1W,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
79
- rohlik_sales_1D,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
80
- rohlik_sales_1W,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
81
- rossmann_1D,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
82
- rossmann_1W,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
83
- solar_1D,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
84
- solar_1W,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
85
- solar_with_weather_15T,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
86
- solar_with_weather_1H,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
87
- uci_air_quality_1D,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
88
- uci_air_quality_1H,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
89
- uk_covid_nation_1D/cumulative,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
90
- uk_covid_nation_1D/new,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
91
- uk_covid_nation_1W/cumulative,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
92
- uk_covid_nation_1W/new,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
93
- uk_covid_utla_1D/new,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
94
- uk_covid_utla_1W/cumulative,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
95
- us_consumption_1M,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
96
- us_consumption_1Q,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
97
- us_consumption_1Y,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
98
- walmart,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
99
- world_co2_emissions,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
100
- world_life_expectancy,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
101
- world_tourism,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
tables/pivot_SQL.csv DELETED
@@ -1,101 +0,0 @@
1
- Task name,Chronos-2,TiRex,TimesFM-2.5,Toto-1.0,Moirai-2.0,Chronos-Bolt,TabPFN-TS,Sundial-Base,Stat. Ensemble,AutoARIMA,AutoETS,AutoTheta,Seasonal Naive,Naive,Drift
2
- ETT_15T,0.5458017215000001,0.5682984928,0.5771622748,0.5930359987,0.5737369405,0.5737369405,0.6023976568,0.597092731,0.7624529909000001,0.7624529909000001,1.2626027246,1.0985228656,0.7624529909000001,1.3268766411,1.3649829587
3
- ETT_1D,1.1315469453,1.1014613305,1.1440582667,1.1431991194,1.1321824157,1.1321824157,1.2302029516,1.2461046836,1.2707356751,1.2587593653,1.3559628802,1.3789083105,1.3728451389,1.4222525092,1.4528881358
4
- ETT_1H,0.8829666059,0.8735827998000001,0.8822637379,0.8726715063,0.9435863248,0.9435863248,0.93321436,0.9634114324,1.2717102201,1.052404926,1.7645010362,2.0612851578,1.2068899431,2.3136589326,2.4221862813
5
- ETT_1W,2.3200722486,2.264520334,2.2485701754,2.2807752001,2.2795034775,2.2795034775,2.4105571965,2.4688224531,2.4073690783,2.4423112635,2.39380306,2.603472326,2.5092678823,2.5092678823,2.63212947
6
- LOOP_SEATTLE_1D,0.7791980647000001,0.7923359463,0.7738014961,0.8309489631,0.8051325971000001,0.8051325971000001,0.7804864737,0.8625023325000001,0.8198461462000001,0.8099517857,0.8246251865,0.8528499579000001,1.0461703776,2.4710363002,2.6285047085
7
- LOOP_SEATTLE_1H,0.6390561982,0.6558214249000001,0.6206804936,0.6981449455000001,0.7646847805,0.7646847805,0.6785128884,0.7695770803,1.5008790861,1.5008790861,2.6385256214,2.8320370482,1.5008790861,3.5094786471,3.7005853436
8
- LOOP_SEATTLE_5T,0.5325339887,0.5488731010000001,0.5953126390000001,0.5612747662,0.7101241523,0.7101241523,0.6414697138000001,0.6606205367,1.0436727136,1.0012742792,1.1550368249,1.1098659427,0.7515879948,1.8612988657,2.0191661844
9
- M_DENSE_1D,0.6463243544,0.7460414464,0.7075343346,0.8417803746,0.7589658968,0.7589658968,0.7560067856,0.7844887054,0.9647884446,0.9701754768,1.0734765679,1.1434781616,1.262653406,2.1937270172,2.2311998044
10
- M_DENSE_1H,0.5854558868,0.5867504602,0.556059175,0.6211696495,0.5952543328000001,0.5952543328000001,0.6460899053,0.6604636921,1.1265341106,1.0625833478,59.0195299046,3.0980400553,1.3040659305,3.8689657918,4.0939855017
11
- SZ_TAXI_15T,0.3932968859,0.3955981846,0.3966454244,0.4014560725,0.413175328,0.413175328,0.4285012823,0.4438538338,0.5602190946,0.5602190946,2.3550253131,0.5126750232,0.5602190946,1.3787889942,1.4174386493
12
- SZ_TAXI_1H,0.3977234494,0.4050422075,0.4156030479,0.4183039495,0.4264135301,0.4264135301,0.4935099732,0.5170317067,0.6894973186000001,0.6584161139,12313683383.147636,0.983741696,0.8375139431,2.6856786961,2.9588624372
13
- australian_tourism,0.6769555543,0.7859715496,0.7323027992000001,0.8897084606000001,0.9175231952,0.9282641589,0.6989805801,0.7908486579,0.7300394505000001,0.8009680433,0.7615891772000001,0.8129699438,0.8947401082,1.5916364579,1.7922461374
14
- bizitobs_l2c_1H,0.3010456324,0.3662951077,0.3261346281,0.3700783044,0.3419873985,0.3419873985,0.3540742815,0.4121569345,0.6336059931,0.6185436377,0.7179372865,0.6824779096,0.8851906828,0.6654111557,0.669961201
15
- bizitobs_l2c_5T,0.4108409399,0.6788551053,0.4610602059,0.5953979102,0.7570014323,0.7570014323,0.4854874227,0.4004194445,0.7197078839000001,0.8247104427,0.7310899228000001,0.7495634618,0.9226397442,0.6779088155,0.7933793841
16
- boomlet_1062,0.5523285116000001,0.5548997157000001,0.5732470754,0.5478320341,0.5927620413,0.6387175665,0.7083924656,0.6467962229,0.9851058144,0.7541477798,1.3088562197,1.3443713412,0.9105473153,4.3036993716,4.6588724435
17
- boomlet_1209,0.6799100048000001,0.7293072077,0.7045922388,0.645080569,0.7562347037,0.7840808515000001,1.0159986311,0.7807326884,2.4692530935,1.1085996591,1.26373922,2.7292377595,1.26373922,3.2386174338,3.5173454757
18
- boomlet_1225,0.1864128984,0.1876278604,0.1900803084,0.1833820954,0.1948503398,0.2030750841,0.2145097606,0.222714996,0.2803755249,0.2348969847,0.3176935124,0.3296940654,0.7453858177,0.7453858177,0.758570547
19
- boomlet_1230,1.2010320136,1.1859324313,1.1874247824,1.1375594979,1.2863247224,1.266108854,1.6130013764000002,1.3047326747,3.3900350214,1.8500253092,393376667139840.8,3.9779653374,2.0369976474,5.548152717,5.9878393324
20
- boomlet_1282,0.4211360536,0.4089033383,0.4034160537,0.4069384603,0.4269211119,0.461810646,0.4252624699,0.4521593639,0.7391125197,0.5565242655,0.9135627329,0.9716916511,1.5394068156,1.5394068156,1.5690882811
21
- boomlet_1487,0.4233194087,0.4270074608,0.4122943587,0.4003928432,0.455761865,0.4824435432,0.7454959652,0.4989559922,0.6807093562000001,0.6560424612,0.7236915730000001,0.8366025999000001,0.8422519568,5.651237163,6.1210676162
22
- boomlet_1631,0.5718707143,0.5981611197000001,0.5790200299,0.5808311118,0.5907980989,0.6194052562,0.6970609561000001,0.6443979368,0.8513712543,0.8513712543,0.7214099148,0.7282739185,0.8513712543,1.3493380035,1.3890549561
23
- boomlet_1676,0.5686749053,0.5712459165,0.562625503,0.5544290679,0.5727147225,0.6076896737,0.8311081643,0.6145915641,0.8503822276,0.8503822276,0.7563535779,0.7835312638,0.8503822276,1.3195857419,1.3578116859
24
- boomlet_1855,0.4615736869,0.4500166174,0.4725778373,0.4524286557,0.464879974,0.4695926826,0.6233137320000001,0.5254199296000001,1.1233499934,1.0829482214,1.1848850765,1.204414213,1.4642665486,3.2734556686,3.2968156747
25
- boomlet_1975,0.1333320445,0.1921381366,0.1671766157,0.1262384828,0.2195469335,0.1793929044,0.2069952508,0.2023056594,0.5478588809,0.5505765392,0.6113593807000001,0.6292227757000001,0.8427719263000001,0.6114911297,0.6131317081000001
26
- boomlet_2187,0.7122729749000001,0.7105001322000001,0.8020040101,0.7637500168,0.8067927027,0.7746853019000001,0.9340158386,0.8515537165,1.2729717642,1.3028566624,1.3069851719,1.389411779,1.6696910974,3.0072867381,3.0279388411
27
- boomlet_285,0.290064067,0.3453755039,0.3965655545,0.3185360094,0.4274151922,0.476702899,0.7127008195,0.4879211264,1.2619335645,1.1887776805,1.2033358677,1.3318503729,6.0221504695,6.0221504695,6.1302545159
28
- boomlet_619,0.3232653941,0.3410809257,0.3398320588,0.309878085,0.3294344187,0.4708614915,0.3305066441,0.3705071077,0.7771722948,0.5544648012,0.8944230183,0.8352158487,1.2751647052,1.2751647052,1.3005697258
29
- boomlet_772,0.2827797602,0.2962086426,0.2948668716,0.2810029794,0.3139115775,0.3391929948,0.3295303206,0.3520560133,1.1794168073,0.7834129974,531470228.16674185,1.4390517121,2.4909982911,2.4909982911,2.5366947218
30
- boomlet_963,0.7165952951,0.7184034841,0.7387586339000001,0.7199999526,0.7505200217,0.7786787266,0.7960581525,0.7521897883,1.3348061563,1.1056032467,1.6089011238,1.4536844039,1.6474289575,1.6474289575,1.6758761104
31
- ecdc_ili,2.271393724,2.4106397038000003,2.2150356629,2.554483793,2.4544933394,2.6531174908,2.3819418015,2.7054455064000003,3.8373720704,3.6414550365,4.0788004388,3.8437922843,3.7763740551,3.7763740551,3.9298378029
32
- entsoe_15T,0.4539692578,0.4692753774,0.4709170997,0.5909160927,0.478288762,0.5061680935,0.4837394321,0.6669136238000001,0.7806910892000001,0.7806910892000001,3.0289340615,0.5794334285,0.7806910892000001,1.5177144586,1.6350644474
33
- entsoe_1H,0.4292730733,0.4701221987,0.4680893711,0.4795713506,0.4870732428,0.4574194964,0.4419444303,0.7440774844,0.8919673675,0.8725110581000001,1.9050298297,0.9723015525,1.0561195152,1.91535268,2.0110168444
34
- entsoe_30T,0.4335548965,0.5229834486,0.5657877209000001,0.4958133037,0.4883587468,0.5294317223,0.5116608489,0.7215674609,0.8465224818,0.980742171,2.492761432,0.7996836131,1.0103240484,1.6091505549,1.5911802499
35
- epf_be,0.5032958894,0.5270142745,0.4937475347,0.5648275564,0.5281380165,0.573131006,0.5324134798,0.6465423658,1.2134724304,1.0560628345,1.5343230451,1.4843337008000002,1.1502802436,3.0844576332,3.1070840486
36
- epf_de,0.4911168264,1.0321659189,1.0300427797,1.1058453126,1.0163698014,1.0208059246,0.4402987265,1.1830726521,1.1665641061,1.2777053882,1.4013079444,1.4943830235,1.3876764191,1.4012218785,1.4206596948
37
- epf_fr,0.3617710942,0.4013687759,0.4091649941,0.4256540696,0.4092032808,0.4389128912,0.3307410445,0.461064889,1.1455989836,1.1580732451,0.8989034107,1.5911735884,1.2455233831,3.8189174071,3.8479452737
38
- epf_np,0.6581143676,0.9662474004,1.1706350574,1.0368665291,0.9253466826,0.971072301,0.6592724518,0.9450979115,1.2844205231,1.3932103761,1.9332061254,1.2812041765,1.5298484821,1.9403665636,1.9414483144
39
- epf_pjm,0.3815757302,0.4041710148,0.4263079971,0.4518928599,0.4405348981,0.4216993095,0.4270292068,0.4679144039,0.4870679588,0.48187052,0.9138786189,0.6031844165,0.5152721396000001,0.9298473491,0.9378548257
40
- ercot_1D,0.8691909797,0.8182837121000001,0.8296777262,0.8800154437000001,0.9470906371,0.9164572277,0.9810503129,0.9267011801,1.2548535439,1.1018625405,1.3820413333,1.4186958416,1.3382664757,1.3903868406,1.4000667198
41
- ercot_1H,1.0291210655,1.0649765384,1.1510446297,1.095463785,1.0976602987,1.137929015,1.2076871071,1.2226080643,1.259822515,1.1754444345,2.6755880612,1.2749705934,1.3214751318,2.6413247553,2.6942610140000003
42
- ercot_1M,0.7549419552000001,0.8060543809,0.7715311289,1.007020102,0.972573257,0.7729483605,0.9028337317,0.917392765,0.7617082171,0.7879913849,0.7564464177,0.9653005355,0.9042858434,3.4990135369,3.8188806322
43
- ercot_1W,0.9664287901,0.954652414,0.9324255927,1.0602182535,1.0526167016,0.9613116039,1.2284207021,1.2458511259,2.0949542269,2.089948711,2.0679213662,2.1282361494,2.0789778405,2.0789778405,2.0801083861
44
- favorita_stores_1D,0.9164120515,0.9681608123,0.9493623591,1.0363827033,0.9798213622,1.0322306624,0.9697812299,1.0613262128,1.1970549978,1.2216416053,1.2378827412,1.2731528133,1.6902367853,2.6356836377,2.6562348012
45
- favorita_stores_1M,1.7943755173,1.8559124197,1.9983090236,2.0093638587,2.0913151428,2.0865003553,1.9335734731,2.2542926251,1.942621879,2.0381596319,1.9424462204,1.9416452953,2.0967115946,2.0578284127,2.106703069
46
- favorita_stores_1W,2.0241018122,2.046240588,1.9683866102,2.1277442598,2.1965497094,2.1010925554,2.1226627361,2.3082226469,2.2196008497,2.2969051079,2.3568206927,2.3159830026,2.4938289104,2.4938289104,2.5295781907
47
- favorita_transactions_1D,0.6846128061,1.0314215727,0.9750458566,0.9750458566,0.9750458566,0.9750458566,1.2251845822,1.1981736735,1.1848435874,1.562168577,1.1813088433,1.2463370552,1.7338216714,2.7303837473,2.7460309898
48
- favorita_transactions_1M,0.9426020852,1.0893114126,1.1326951058,1.3968989653,1.389630485,1.3584690914,1.2438493019,1.4526874778,1.1521708088,1.2777968435,1.1787496733,1.2743467248,1.3301725476,1.7424291672,1.8848237078
49
- favorita_transactions_1W,1.2279251366,1.3836394276,1.4283013139,1.5565627963000002,1.4633900473,1.4283013139,1.9116392061,1.8454095028,1.55928265,1.6323137052,1.6473855473,1.7020928499,1.6714139443,1.6714139443,1.7289504361
50
- fred_md_2025/cee,3.4681775163,3.3490390729,4.4904404116,4.4904404116,4.4904404116,4.4904404116,3.872866885,4.8863751494,3.7449838346,5.8791415649,3.642884743,4.3189751514,9.4371027278,5.9195737804,4.236293641
51
- fred_md_2025/macro,5.6801711129,5.3069669462,5.8417533276,5.8417533276,5.8417533276,5.8417533276,6.3986770227,6.2236190621,5.7428835095,6.5438633054,5.7936387412,6.0124726904,9.5793076258,6.4047596955,5.9752290488
52
- fred_qd_2025/cee,2.1919920004,2.0461814654,2.1807036186,1.7726716319,2.2955960423,2.3654952138,2.2915507616,3.6414340592,1.9027740715,1.9543398085,2.1232724277,2.2176909101,4.4448478957,3.675773916,2.1956616384
53
- fred_qd_2025/macro,3.5367304169,3.5296543064,3.5932767502000003,3.4020827998,3.6155615726,3.6544020032,4.2401411107,4.5427910096,3.6148508861,3.8675028627,3.9044348431,3.8250563211,5.2213314727,4.251884602,3.7928250976
54
- gvar,0.5781460165,0.576786326,0.5902138174,0.5758663156,0.5933262207000001,0.5962858414000001,0.6741322757,0.7468286472,0.5896099351,0.6171744519,0.5932241947,0.616191821,0.7861696279,0.6701753186,0.6414950038
55
- hermes,0.6092189047000001,0.6510189412,0.6183988819,0.9852562723,0.7037822323,0.6752116267,0.7049311249,0.8242736568,1.4161705928,1.2129200308,1.6730456492,1.5539343318,2.1461477983,2.1461477983,2.2601295911
56
- hierarchical_sales_1D,0.5567377299,0.5472671449000001,0.5516009983,0.5468045976,0.550892445,0.550892445,0.5720159668,0.63854811,0.7197387018,0.6445167344,0.7933138017,0.815310861,1.0291569643,1.5929687017,1.6067653205
57
- hierarchical_sales_1W,0.6161304308000001,0.6208684057,0.6177938232,0.6372998817000001,0.6366963845,0.6366963845,0.6369452495,0.7066222052000001,0.7460571909,0.7472607405,10.476792269,0.7744970082,1.3859393726,1.3859393726,1.416652405
58
- hospital,0.6860471166000001,0.6884080716000001,0.6797112236,0.7333522854000001,0.6968021756,0.6968021756,0.6961291798,0.8343055996000001,0.6974795864000001,0.7310321414000001,0.7259497104,0.7401804136,0.8075126003,1.0208467827,1.0870231786
59
- hospital_admissions_1D,0.5544475607,0.5551415729,0.5560606379,0.555491233,0.5555647846,0.5561584192,0.5622795668,0.610265181,0.5569559255000001,0.5556445831,0.5557966863,0.5748023874,0.8571822336,1.3250699981,1.3357575815
60
- hospital_admissions_1W,0.5763906236,0.5850609146,0.5795336813,0.597604554,0.5862064826,0.5868402215,0.5814141841,0.6410506868,0.5789001687,0.5793359333,0.5783166572,0.5976752248,1.0492127258,1.0492127258,1.0884368132
61
- jena_weather_10T,0.354328751,0.3893025483,0.3571555639,0.3684159974,0.4178230361,0.4178230361,0.412525166,0.4152438085,0.6729893352,0.6729893352,0.7418250443000001,0.7929160924,0.6729893352,0.7693201112,0.8000027464
62
- jena_weather_1D,1.1112540336,1.0716473753,1.0903437431,1.1121551269,1.0749683503,1.0749683503,1.1553103934,1.2388075013,1.3391730809,1.3052392106,1.6641987728,1.5312195918,1.7668615982,2.1502001657,2.2588601945
63
- jena_weather_1H,0.3530167077,0.3556668986,0.3588962212,0.3616362418,0.3668484878,0.3668484878,0.4127616053,0.3803257267,0.4515903467,0.4369650923,0.552924984,0.5933268886,0.6550438031,0.5788947352,0.5844505923000001
64
- kdd_cup_2022_10T,0.4250791237,0.5333420067,0.5333420067,0.5333420067,0.5333420067,0.5333420067,0.5550654023,0.5333420067,0.7774995242,0.7774995242,0.7469867514,0.7782845321,0.7774995242,0.7544738282,0.8433392069000001
65
- kdd_cup_2022_1D,0.7035021561,0.6974981294,0.6975119247,0.7036948238,0.7078449047,0.7086991568000001,0.7153283882,0.8018621055,0.7298517236000001,0.720047667,0.7509996402,0.7391822834,0.9005495243,1.1381260567,1.1646512316
66
- kdd_cup_2022_30T,0.4388772932,0.4319676071,0.505462759,0.4288668087,0.4273561278,0.5612428382,0.5433847052,0.5099402658000001,0.6792689234,0.6406027358,0.7719233326,0.7653501983000001,0.7740434291,0.7638793006,0.7929597862000001
67
- m5_1D,0.7235519770000001,0.7143626546,0.7292764901000001,0.7292764901000001,0.7292764901000001,0.7292764901000001,1.2544668347,0.8516064277000001,1.2544668347,0.8516619783,0.8527658259,0.8721490279,1.2544668347,1.9603909963,1.9793212176
68
- m5_1M,0.9769838219,0.9740068956,0.9798127249,1.0439813048,0.9958730245,1.0000578921,1.0016519091,1.0814673882,1.0218515241,1.0455375252,1.1082320899,1.0987392502,1.1398593529,1.1923633059,1.2896192789
69
- m5_1W,0.9001918640000001,0.9025800625,0.9165191908,0.904968291,0.9069017163,0.9165191908,0.9281611829,0.9747800888,0.9362638046,0.9366737298,0.9530783877,0.9633961601,1.3557578931,1.3557578931,1.3899419915
70
- proenfo_gfc12,0.6485047642,0.9081089751,0.9171920666,0.9171920666,0.9171920666,0.9171920666,0.8344528413000001,0.9003739311000001,1.3049170998,1.1408344793,2.4308618583,1.414921573,1.1997208201,2.3796009992,2.4805205301
71
- proenfo_gfc14,0.4301438389,0.7205809869,0.7673985057,0.7673985057,0.7673985057,0.7673985057,0.5148198578000001,0.4208035936,0.9059171447,0.947126445,1.1104064418,1.0554823676,1.0750756438,3.209615645,3.4025952491
72
- proenfo_gfc17,0.4848892495,0.8894497071,0.9004430830000001,0.9004430830000001,0.9004430830000001,0.9004430830000001,0.6716514716,0.5086387805,1.1416586194,1.1149783841,2.1346457093,1.1469535851,1.3160348949,2.5749628946,2.7046737562
73
- redset_15T,0.7901011341,0.8326109518,0.7405330074,0.8177766808,1.0409395846,1.2430012316,1.2504740912,1.160404574,1.2313423811,1.2313423811,1.2313423811,10.1219214394,1.2313423811,33.9212721313,35.0901218659
74
- redset_1H,1.3653252669,1.3365796216,1.366509388,1.3064391449,1.4098475772,2.2790272339,1.3205339155,1.4505298471,1.8587229014,1.8772582072,2.3765166001,4.0716886989,1.9424894097,10.5809680586,10.6448235022
75
- redset_5T,0.6541973684,0.7872933801,0.7231351044000001,0.7192159039,0.7931599229,1.025913162,0.7111485095000001,0.8873768717,2.6902332367,1.9052087686,1.2243411634,3.3566436475,1.2243411634,12.0595440026,13.0588504389
76
- restaurant,0.6853328122,0.6816216488,0.6773501614,0.7040430265000001,0.6890372912,0.6890372912,0.6930359174,0.7474752761,0.7085218117000001,0.7558027757,1.0214758859,0.7607880054,0.9837597907,1.6150739536,1.6918666339
77
- rohlik_orders_1D,0.9592108572,0.9857545101,1.0057460708,1.1350889685,0.9699727195,1.0507521562,1.3410638007,1.1963053977,1.2113521188,1.2661753782,1.4469855127,1.3973344823,1.5544219081,2.9129738594,2.9819524139
78
- rohlik_orders_1W,1.2996634049,1.3004244287,1.32777854,1.4933704304,1.5315439437,1.4281796145,1.5240499794,1.8923042995,1.3984122308,1.4146777164,1.4189633182,1.3962994461,1.4844422646,1.4844422646,1.4886376798
79
- rohlik_sales_1D,0.8807894684,1.1480800218,1.0957943217,1.2180556543,1.1696411255,1.1471494654,1.3749816723,1.2026659678,1.2482652223,1.2758180745,1.2661606689,1.2818357414,1.3749816723,1.5460015545,1.5603709005000002
80
- rohlik_sales_1W,1.274141193,1.4251751964,1.4010447148,1.504562043,1.5157422743,1.5215966312,1.220508006,1.6933358341,1.6455287753,1.8024970943,14.4532204201,1.6547436183,1.9282179039,1.9282179039,1.9690203085
81
- rossmann_1D,0.2834680567,0.539134486,0.5015787540000001,0.5677454284,0.5274198802,0.5246207313,0.23207865,0.5305513714,0.5781148561,0.5619283369,0.5936917112,0.8315478225,0.9136725214,2.7620723724,2.818179584
82
- rossmann_1W,0.307693489,0.4815594255,0.4951771693,0.4944119667,0.496872717,0.4871499621,0.2538651882,0.5781252095,0.5013864497,0.5212168044000001,0.5175490828,0.5160293344,0.8987958652,0.8987958652,0.9605854168
83
- solar_1D,0.5935714299,0.6141032699,0.6181956031,0.6223902809,0.6373379623000001,0.6349957556,0.6146167789,0.6669937254,0.6528759965,0.6575818024,0.6558359500000001,0.6785205054,0.9019637416,1.4067834918,1.4888788408
84
- solar_1W,0.8952784212,1.1207884648,1.0958866195,1.3917193313,1.6583052048,0.9401913951,0.8695612766,0.9287843032,1.2959542496,1.2798883181,1.2121746876,1.4256110648,1.4228493197,1.4228493197,1.8015134215
85
- solar_with_weather_15T,0.6769263994,0.8456990474,0.9063360715,0.7839335449,0.8387112868000001,0.8094202444,0.7470578953,0.9625972649,1.1937856846,1.1937856846,2.5289087933000003,3.5850953026,1.1937856846,2.2779930243,2.3830110819
86
- solar_with_weather_1H,0.7672847522,0.9000403927,0.8153876375,0.876018842,0.9070575976,0.8156760185,0.7005612194,1.1815051767,1.4584163166000002,1.1314165351,2.1818023268,3.3576154004,1.2119606616,2.1807435542,2.1831749916
87
- uci_air_quality_1D,1.0461166174,1.1279764862,1.205083714,1.2602294231,1.1380484786,1.0919688778,1.1863454763,1.2144755341,1.1225466397,1.2403312496,1.1812884821,1.2334025241,1.4013448948,1.8738938294,1.9477985237
88
- uci_air_quality_1H,0.7983040593,0.8650050244,0.8769395756,0.8700071749,0.9453838524,0.89902861,0.9312390864,1.0009256435,1.5607085558,1.1923767477,41026.9886208021,1.9559568032,1.3840397362,2.4249545583,2.544297151
89
- uk_covid_nation_1D/cumulative,7.8258567979,7.6534868379,7.050808391,6.1880495911,6.762809245,8.1573948756,13.0445256974,16.0063232428,7.7115645361,8.6773500345,7.1837995535,18.4454679918,27.0030154455,23.7425594527,17.5575952088
90
- uk_covid_nation_1D/new,2.0372645115,1.9920440399,2.135267758,2.0391528653,2.1353860487,2.1221392593,2.0764757709,2.2998485754,2.7990662584,3.8389323119,2.7409717093,2.5298732341,2.5728651106,2.6919734344,2.7354032661
91
- uk_covid_nation_1W/cumulative,2.7834425341,3.1923854702,4.01082831,2.8235902828,3.0143746347,3.4351717559,2.8719957749,5.2476339527,2.2375975817,9.8478063402,2.3989565537,5.097376861,7.7039519752,7.7039519752,4.9437715765
92
- uk_covid_nation_1W/new,4.9682126678,4.5324987152,3.7830532019,5.0981213862,3.8727833855,4.1483138966,4.1427702993,3.5699175673,5.7411671194,12.6543213595,5.0239734103,5.1818506739,5.1795349212,5.1795349212,5.3904979176
93
- uk_covid_utla_1D/new,3.7252348002,3.7286792775,3.5117739729,4.0356930401,3.565225656,3.5311824645,3.8009751218,3.6498480124,5.5816729211,7.407131023,5.622786154,5.0552633527,4.5971311302,5.1718851312,5.2745393338
94
- uk_covid_utla_1W/cumulative,17.4422360952,19.434962205,18.4860520309,16.2859178099,19.3249941782,17.4887255246,16.9124597959,26.4381110934,14.3311431786,13.9770561849,16.3125415616,20.1018108531,24.6697283453,24.6697283453,19.7494072856
95
- us_consumption_1M,1.4636823053,1.4670456897,1.6053660409,1.5639307325,1.5132208912,1.5162423149,1.5711057336,1.8961848647,1.4864869258,1.598443305,1.4452749249,1.704219721,2.6840778381,1.8701116849,1.6834522226000002
96
- us_consumption_1Q,1.7235145772,1.8028657315,1.9266298936,1.7074351120000002,1.7957240899,1.764175518,2.6728862979,2.8659918221,1.9078230052,2.0470332513,1.8861010469,2.3452449672,3.3237196122,2.5675143796,2.1897132455
97
- us_consumption_1Y,3.730472451,3.6344846883,4.007463063,3.8978014747,4.8066289721,4.1076459792,4.1801774688,5.8799625833,3.7862940987,3.6882837957,4.0805825682,5.0841302662,6.5846226659,6.5846226659,4.9461376338
98
- walmart,0.6478016418,0.7074857338,0.6794198494,0.9071550498,0.8447389691,0.7740159174,0.6618592710000001,0.8422492473000001,1.2166093946,1.0205417736,21704350706303.93,1.4674936934,2.0341238516,2.0341238516,2.2528910444
99
- world_co2_emissions,2.6702032785,2.6434689128,2.8764182979,2.7160328031,2.8754184288,2.7544343248,2.7200799174,3.6825226706,2.6879348969,2.8223304034,7.7240531151,2.8254620295,3.1550152472,3.1550152472,2.755800442
100
- world_life_expectancy,1.1865747514,1.1086152308,1.2103954021,1.6394210102,1.7852750057,1.3452468722,1.1492708484,1.6015213365,1.3050094069,1.2829496791,1.3015724131,1.4512016278,1.8297624985,1.8297624985,1.5824689261
101
- world_tourism,3.0519540955,3.0521218421,3.5616996609,3.2075602319,3.2640026065,3.1644023349,2.7953196676000003,4.3603502979,2.552402438,2.6184635789,2.8819679863000003,2.5742928529,3.2013302671,3.2013302671,2.3982302133
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
tables/pivot_SQL_baseline_imputed.csv DELETED
@@ -1,101 +0,0 @@
1
- Task name,Chronos-2,TiRex,TimesFM-2.5,Toto-1.0,Moirai-2.0,Chronos-Bolt,TabPFN-TS,Sundial-Base,Stat. Ensemble,AutoARIMA,AutoETS,AutoTheta,Seasonal Naive,Naive,Drift
2
- ETT_15T,False,False,False,False,False,False,False,False,True,True,False,False,False,False,False
3
- ETT_1D,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
4
- ETT_1H,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
5
- ETT_1W,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
6
- LOOP_SEATTLE_1D,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
7
- LOOP_SEATTLE_1H,False,False,False,False,False,False,False,False,True,True,False,False,False,False,False
8
- LOOP_SEATTLE_5T,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
9
- M_DENSE_1D,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
10
- M_DENSE_1H,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
11
- SZ_TAXI_15T,False,False,False,False,False,False,False,False,True,True,False,False,False,False,False
12
- SZ_TAXI_1H,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
13
- australian_tourism,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
14
- bizitobs_l2c_1H,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
15
- bizitobs_l2c_5T,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
16
- boomlet_1062,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
17
- boomlet_1209,False,False,False,False,False,False,False,False,False,False,True,False,False,False,False
18
- boomlet_1225,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
19
- boomlet_1230,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
20
- boomlet_1282,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
21
- boomlet_1487,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
22
- boomlet_1631,False,False,False,False,False,False,False,False,True,True,False,False,False,False,False
23
- boomlet_1676,False,False,False,False,False,False,False,False,True,True,False,False,False,False,False
24
- boomlet_1855,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
25
- boomlet_1975,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
26
- boomlet_2187,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
27
- boomlet_285,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
28
- boomlet_619,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
29
- boomlet_772,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
30
- boomlet_963,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
31
- ecdc_ili,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
32
- entsoe_15T,False,False,False,False,False,False,False,False,True,True,False,False,False,False,False
33
- entsoe_1H,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
34
- entsoe_30T,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
35
- epf_be,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
36
- epf_de,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
37
- epf_fr,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
38
- epf_np,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
39
- epf_pjm,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
40
- ercot_1D,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
41
- ercot_1H,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
42
- ercot_1M,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
43
- ercot_1W,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
44
- favorita_stores_1D,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
45
- favorita_stores_1M,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
46
- favorita_stores_1W,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
47
- favorita_transactions_1D,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
48
- favorita_transactions_1M,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
49
- favorita_transactions_1W,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
50
- fred_md_2025/cee,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
51
- fred_md_2025/macro,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
52
- fred_qd_2025/cee,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
53
- fred_qd_2025/macro,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
54
- gvar,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
55
- hermes,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
56
- hierarchical_sales_1D,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
57
- hierarchical_sales_1W,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
58
- hospital,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
59
- hospital_admissions_1D,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
60
- hospital_admissions_1W,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
61
- jena_weather_10T,False,False,False,False,False,False,False,False,True,True,False,False,False,False,False
62
- jena_weather_1D,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
63
- jena_weather_1H,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
64
- kdd_cup_2022_10T,False,False,False,False,False,False,False,False,True,True,False,False,False,False,False
65
- kdd_cup_2022_1D,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
66
- kdd_cup_2022_30T,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
67
- m5_1D,False,False,False,False,False,False,True,False,True,False,False,False,False,False,False
68
- m5_1M,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
69
- m5_1W,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
70
- proenfo_gfc12,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
71
- proenfo_gfc14,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
72
- proenfo_gfc17,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
73
- redset_15T,False,False,False,False,False,False,False,False,True,True,True,False,False,False,False
74
- redset_1H,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
75
- redset_5T,False,False,False,False,False,False,False,False,False,False,True,False,False,False,False
76
- restaurant,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
77
- rohlik_orders_1D,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
78
- rohlik_orders_1W,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
79
- rohlik_sales_1D,False,False,False,False,False,False,True,False,False,False,False,False,False,False,False
80
- rohlik_sales_1W,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
81
- rossmann_1D,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
82
- rossmann_1W,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
83
- solar_1D,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
84
- solar_1W,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
85
- solar_with_weather_15T,False,False,False,False,False,False,False,False,True,True,False,False,False,False,False
86
- solar_with_weather_1H,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
87
- uci_air_quality_1D,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
88
- uci_air_quality_1H,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
89
- uk_covid_nation_1D/cumulative,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
90
- uk_covid_nation_1D/new,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
91
- uk_covid_nation_1W/cumulative,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
92
- uk_covid_nation_1W/new,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
93
- uk_covid_utla_1D/new,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
94
- uk_covid_utla_1W/cumulative,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
95
- us_consumption_1M,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
96
- us_consumption_1Q,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
97
- us_consumption_1Y,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
98
- walmart,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
99
- world_co2_emissions,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
100
- world_life_expectancy,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
101
- world_tourism,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
tables/pivot_SQL_leakage_imputed.csv DELETED
@@ -1,101 +0,0 @@
1
- Task name,Chronos-2,TiRex,TimesFM-2.5,Toto-1.0,Moirai-2.0,Chronos-Bolt,TabPFN-TS,Sundial-Base,Stat. Ensemble,AutoARIMA,AutoETS,AutoTheta,Seasonal Naive,Naive,Drift
2
- ETT_15T,False,False,False,False,True,False,False,False,False,False,False,False,False,False,False
3
- ETT_1D,False,False,False,False,True,False,False,False,False,False,False,False,False,False,False
4
- ETT_1H,False,False,False,False,True,False,False,False,False,False,False,False,False,False,False
5
- ETT_1W,False,False,False,False,True,False,False,False,False,False,False,False,False,False,False
6
- LOOP_SEATTLE_1D,False,False,False,False,True,False,False,False,False,False,False,False,False,False,False
7
- LOOP_SEATTLE_1H,False,False,False,False,True,False,False,False,False,False,False,False,False,False,False
8
- LOOP_SEATTLE_5T,False,False,False,False,True,False,False,False,False,False,False,False,False,False,False
9
- M_DENSE_1D,False,False,False,False,True,False,False,False,False,False,False,False,False,False,False
10
- M_DENSE_1H,False,False,False,False,True,False,False,False,False,False,False,False,False,False,False
11
- SZ_TAXI_15T,False,False,False,False,True,False,False,False,False,False,False,False,False,False,False
12
- SZ_TAXI_1H,False,False,False,False,True,False,False,False,False,False,False,False,False,False,False
13
- australian_tourism,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
14
- bizitobs_l2c_1H,False,False,False,False,True,False,False,False,False,False,False,False,False,False,False
15
- bizitobs_l2c_5T,False,False,False,False,True,False,False,False,False,False,False,False,False,False,False
16
- boomlet_1062,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
17
- boomlet_1209,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
18
- boomlet_1225,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
19
- boomlet_1230,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
20
- boomlet_1282,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
21
- boomlet_1487,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
22
- boomlet_1631,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
23
- boomlet_1676,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
24
- boomlet_1855,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
25
- boomlet_1975,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
26
- boomlet_2187,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
27
- boomlet_285,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
28
- boomlet_619,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
29
- boomlet_772,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
30
- boomlet_963,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
31
- ecdc_ili,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
32
- entsoe_15T,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
33
- entsoe_1H,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
34
- entsoe_30T,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
35
- epf_be,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
36
- epf_de,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
37
- epf_fr,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
38
- epf_np,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
39
- epf_pjm,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
40
- ercot_1D,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
41
- ercot_1H,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
42
- ercot_1M,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
43
- ercot_1W,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
44
- favorita_stores_1D,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
45
- favorita_stores_1M,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
46
- favorita_stores_1W,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
47
- favorita_transactions_1D,False,False,True,True,True,False,False,False,False,False,False,False,False,False,False
48
- favorita_transactions_1M,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
49
- favorita_transactions_1W,False,False,True,False,False,False,False,False,False,False,False,False,False,False,False
50
- fred_md_2025/cee,False,False,True,True,True,False,False,False,False,False,False,False,False,False,False
51
- fred_md_2025/macro,False,False,True,True,True,False,False,False,False,False,False,False,False,False,False
52
- fred_qd_2025/cee,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
53
- fred_qd_2025/macro,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
54
- gvar,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
55
- hermes,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
56
- hierarchical_sales_1D,False,False,False,False,True,False,False,False,False,False,False,False,False,False,False
57
- hierarchical_sales_1W,False,False,False,False,True,False,False,False,False,False,False,False,False,False,False
58
- hospital,False,False,False,False,True,False,False,False,False,False,False,False,False,False,False
59
- hospital_admissions_1D,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
60
- hospital_admissions_1W,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
61
- jena_weather_10T,False,False,False,False,True,False,False,False,False,False,False,False,False,False,False
62
- jena_weather_1D,False,False,False,False,True,False,False,False,False,False,False,False,False,False,False
63
- jena_weather_1H,False,False,False,False,True,False,False,False,False,False,False,False,False,False,False
64
- kdd_cup_2022_10T,False,True,True,True,True,False,False,True,False,False,False,False,False,False,False
65
- kdd_cup_2022_1D,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
66
- kdd_cup_2022_30T,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
67
- m5_1D,False,False,True,True,True,False,False,False,False,False,False,False,False,False,False
68
- m5_1M,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
69
- m5_1W,False,False,True,False,False,False,False,False,False,False,False,False,False,False,False
70
- proenfo_gfc12,False,False,True,True,True,False,False,False,False,False,False,False,False,False,False
71
- proenfo_gfc14,False,False,True,True,True,False,False,False,False,False,False,False,False,False,False
72
- proenfo_gfc17,False,False,True,True,True,False,False,False,False,False,False,False,False,False,False
73
- redset_15T,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
74
- redset_1H,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
75
- redset_5T,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
76
- restaurant,False,False,False,False,True,False,False,False,False,False,False,False,False,False,False
77
- rohlik_orders_1D,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
78
- rohlik_orders_1W,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
79
- rohlik_sales_1D,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
80
- rohlik_sales_1W,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
81
- rossmann_1D,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
82
- rossmann_1W,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
83
- solar_1D,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
84
- solar_1W,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
85
- solar_with_weather_15T,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
86
- solar_with_weather_1H,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
87
- uci_air_quality_1D,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
88
- uci_air_quality_1H,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
89
- uk_covid_nation_1D/cumulative,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
90
- uk_covid_nation_1D/new,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
91
- uk_covid_nation_1W/cumulative,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
92
- uk_covid_nation_1W/new,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
93
- uk_covid_utla_1D/new,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
94
- uk_covid_utla_1W/cumulative,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
95
- us_consumption_1M,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
96
- us_consumption_1Q,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
97
- us_consumption_1Y,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
98
- walmart,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
99
- world_co2_emissions,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
100
- world_life_expectancy,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
101
- world_tourism,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
tables/pivot_WAPE.csv DELETED
@@ -1,101 +0,0 @@
1
- Task name,Chronos-2,TimesFM-2.5,TiRex,Toto-1.0,TabPFN-TS,Moirai-2.0,Chronos-Bolt,Sundial-Base,Stat. Ensemble,AutoARIMA,AutoETS,AutoTheta,Naive,Seasonal Naive,Drift
2
- ETT_15T,0.1128598548,0.1167248718,0.1158377729,0.121559811,0.122192445,0.1146202493,0.1146202493,0.1157490913,0.1473227948,0.1473227948,0.2089927338,0.1327521257,0.202845639,0.1473227948,0.209491349
3
- ETT_1D,0.3210531384,0.332150948,0.3280948972,0.3407840222,0.3959747152,0.3275848009,0.3275848009,0.3646975075,0.3275626761,0.3554786793,0.3392487691,0.3405146034,0.336139462,0.3566862594,0.3456173895
4
- ETT_1H,0.2467289709,0.245201607,0.2477475438,0.2432126313,0.2553246886,0.2464663107,0.2464663107,0.2547681354,0.2621275507,0.2729976766,0.3240313299,0.2708169587,0.3389070071,0.286422462,0.3517438181
5
- ETT_1W,0.5228870779,0.4956519336,0.4771292359,0.4972649187,0.5109347999,0.4599850744,0.4599850744,0.5208597481,0.4587044328,0.5033163548,0.455156821,0.4891462862,0.3963210046,0.3963210046,0.4451834112
6
- LOOP_SEATTLE_1D,0.0363369947,0.0359623253,0.0367103025,0.0387991458,0.0365180448,0.0373221384,0.0373221384,0.0372882528,0.0378798334,0.0375884525,0.0379914595,0.0389688019,0.0786971625,0.0445690587,0.0891125299
7
- LOOP_SEATTLE_1H,0.0681990329,0.0643115029,0.0704373386,0.0749491051,0.0731078316,0.0797934189,0.0797934189,0.077676107,0.1172784954,0.1172784954,0.1460618883,0.1024438366,0.1526884101,0.1172784954,0.1758716479
8
- LOOP_SEATTLE_5T,0.0736883409,0.0792618439,0.0750445005,0.075644061,0.0858088784,0.0886344958,0.0886344958,0.0829992138,0.1069220781,0.1080897018,0.1085262727,0.1108838413,0.1121638626,0.0883255631,0.130171527
9
- M_DENSE_1D,0.0833181143,0.0935403809,0.0993285432,0.1092759416,0.0926615007,0.0985291574,0.0985291574,0.0968305223,0.1192791395,0.1260855269,0.1300925907,0.1322432969,0.196977134,0.1419847511,0.2006916501
10
- M_DENSE_1H,0.1462709986,0.13799605,0.1467316881,0.1535322428,0.1593384311,0.1466876373,0.1466876373,0.1584326059,0.2484246612,0.2454276025,0.3140071735,0.2921647772,0.6536297143,0.2611668751,0.707449168
11
- SZ_TAXI_15T,0.2391328573,0.2409728497,0.2404616728,0.2440994486,0.2500552535,0.2437216282,0.2437216282,0.245247978,0.3343059897,0.3343059897,0.3189420968,0.2728340209,0.3568555236,0.3343059897,0.3669907093
12
- SZ_TAXI_1H,0.1627460048,0.1730356291,0.1678203642,0.1653927863,0.1798963994,0.1713460237,0.1713460237,0.2091502994,0.1850999221,0.2079726383,0.6624499261,0.2595272139,0.246570535,0.2122471854,0.290869683
13
- australian_tourism,0.090568915,0.0948839262,0.1068701223,0.1337763593,0.0927634016,0.1308895275,0.1434193179,0.0969211906,0.0957876109,0.1101633608,0.0970393047,0.1052965894,0.1803925335,0.1130525246,0.199330695
14
- bizitobs_l2c_1H,0.3308651592,0.3901138266,0.4282031118,0.5299379429000001,0.360369738,0.4081446098,0.4081446098,0.4650631395,1.3223615305,1.7735276449,1.2847489447,1.3980487641,1.3024706409,2.2812914532,1.3151569486
15
- bizitobs_l2c_5T,0.4957357183,0.9057201819,1.4135781384,1.2221172807,0.8823374127,1.3254390534,1.3254390534,0.6893105085,1.3437154961,1.5979523685,1.3366881806,1.6561117344,1.2818957102,2.2837712012,1.8269103833
16
- boomlet_1062,0.5680818457,0.5789273618,0.5749673398,0.5677611841,0.5832466359,0.5945871048,0.6012691446,0.6355941124000001,0.7826401234,0.7457671713,0.8238335352,0.8386591385000001,1.0029399408,0.8355847068000001,1.0990104974
17
- boomlet_1209,0.3048901003,0.3045249204,0.3234299188,0.2916179846,0.3865331056,0.3292905567,0.3271624692,0.3340434651,0.4339859435,0.4278108916,0.4784097772,0.456201244,0.4388518186,0.4784097772,0.5110153038
18
- boomlet_1225,0.1220172789,0.1242312214,0.1230602603,0.1206233559,0.1326060004,0.1278310667,0.1331294786,0.1333109416,0.153843496,0.1446868773,0.1598025897,0.1596047961,0.195260353,0.195260353,0.1988768318
19
- boomlet_1230,0.3054680914,0.2999179457,0.3117769108,0.2909953139,0.3497826156,0.3094188715,0.3241073897,0.3178766378,0.3894998971,0.3998710697,0.4274646386,0.4040077124,0.3912469672,0.4654206108,0.4504819196
20
- boomlet_1282,0.3551724824,0.3418466096,0.3447100926,0.3443926057,0.3517501049,0.3639267584,0.3918061855,0.360391448,0.4329732117,0.4049750815,0.4705070178,0.471762625,0.5673586508,0.5673586508,0.5815167152
21
- boomlet_1487,0.2009541858,0.1978987699,0.2042655856,0.1894979433,0.2418147345,0.2079859222,0.2074861592,0.2194652483,0.2612758556,0.259043758,0.2614417874,0.270651306,0.2881606094,0.2823812783,0.3361342464
22
- boomlet_1631,0.3118222298,0.3155328254,0.3227136546,0.3156198487,0.3554736745,0.322950287,0.3246407648,0.3276903199,0.4303123065,0.4303123065,0.3481223856,0.3499573969,0.3828907337,0.4303123065,0.3956788492
23
- boomlet_1676,0.323739112,0.3195228016,0.3219743376,0.3173684891,0.3439016851,0.3274155865,0.3288848916,0.3249830057,0.4490416802,0.4490416802,0.3539671682,0.3605949771,0.3738144227,0.4490416802,0.3871649546
24
- boomlet_1855,0.1587321404,0.1647552303,0.157446321,0.1576757028,0.1950387305,0.1619848815,0.1634840172,0.1777051742,0.2153578225,0.2241676514,0.2190390133,0.2310231853,0.2028796298,0.255325092,0.2044042459
25
- boomlet_1975,0.0905538368,0.1160976808,0.1343890613,0.0860611707,0.1347071896,0.1478435607,0.1244086675,0.1286565167,0.3327476291,0.3661623288,0.4015633572,0.3240569453,0.4014330303,0.5204730918,0.4021568225
26
- boomlet_2187,0.2656522722,0.2903383515,0.2640573038,0.2836815666,0.3217076673,0.2926881402,0.2890647493,0.3149817281,0.4073318877,0.4429809169,0.4339327821,0.441407778,0.403332821,0.465180005,0.4079644265
27
- boomlet_285,0.163745336,0.1907992813,0.1807812872,0.1596092123,0.1742876602,0.2203877039,0.2555644857,0.2649652282,0.3599062982,0.34433789,0.3622854223,0.3717445356,0.6725665377000001,0.6725665377000001,0.6908623011
28
- boomlet_619,0.2998264338,0.3117435689,0.317407313,0.2789135486,0.3036044294,0.3062168618,0.4683247317,0.3109702097,0.8714422486000001,0.5880218188,0.9528967892,0.8820872245,0.9458725577,0.9458725577,0.9676378967
29
- boomlet_772,0.1571995007,0.160275506,0.16101018,0.1544767227,0.1705900793,0.1698505863,0.1845645847,0.1812428949,0.2635364999,0.2378165958,0.3077275646,0.2834336899,0.2919496069,0.2919496069,0.2993941878
30
- boomlet_963,0.381703259,0.397875566,0.3901485342,0.3792164679,0.415064609,0.4169379192,0.4316260388,0.4042673384,0.5013279652,0.5164873201,0.5458354699,0.5049570994,0.5169750445,0.5169750445,0.5254156838
31
- ecdc_ili,0.3759767383,0.4172024563,0.4242536306,0.4693168223,0.3879963517,0.4756085008,0.4956143111,0.5432749093,0.5675356537,0.5880377501,0.6168868512,0.5694230199,0.5534411848,0.5534411848,0.5846513778
32
- entsoe_15T,0.0421964779,0.0416073938,0.0420496514,0.0522911714,0.0426369185,0.0423905659,0.0428303072,0.0564987165,0.067677392,0.067677392,0.4080646552,0.0539835229,0.1434365042,0.067677392,0.1567171741
33
- entsoe_1H,0.0329469321,0.0358633269,0.0363473815,0.0365800265,0.0333449995,0.0395727229,0.0341011005,0.0554685768,0.0833389089,0.0854086541,0.1569610283,0.0836396273,0.1571170386,0.0792450108,0.1671798959
34
- entsoe_30T,0.0367302982,0.0473410125,0.0399606742,0.0378812171,0.0390591249,0.038267585,0.0378308199,0.0519962882,0.0767360015,0.090934383,0.241174338,0.0721444593,0.1462993909,0.0870952165,0.1450240765
35
- epf_be,0.1155560069,0.11255784,0.1230011668,0.1323491182,0.1179565661,0.1227849199,0.1357350046,0.1303241445,0.1754423061,0.1986222906,0.2487520538,0.1881915066,0.237576263,0.1840044525,0.2400494121
36
- epf_de,0.291016902,0.5914115101,0.5786662247000001,0.6772215117,0.3069136301,0.5364827175,0.5606896855,0.5721812874000001,0.6023222137,0.6818832021,0.6107009687,0.6459928796000001,0.6107063688000001,0.7489839181,0.6189188711
37
- epf_fr,0.0680296246,0.0771284029,0.0797966965,0.0836794117,0.0618426707,0.079128382,0.0876754681,0.0812654203,0.1133474851,0.1532071637,0.1492719604,0.1293735383,0.1702834178,0.1298259975,0.1727491379
38
- epf_np,0.0381853646,0.0639044802,0.0554376821,0.0616097255,0.0386706958,0.0542902095,0.0566988389,0.0496031295,0.0682523511,0.078622775,0.1040808285,0.0688152587,0.1036567884,0.0796461385,0.1036498375
39
- epf_pjm,0.0821098216,0.0941735437,0.08936894,0.1030592872,0.092521411,0.0975614782,0.0937614741,0.0934227692,0.0933501931,0.098476214,0.1716884077,0.1198625589,0.1717319913,0.1016348289,0.1742728941
40
- ercot_1D,0.0765202647,0.0756690312,0.075154368,0.0810110342,0.0898239311,0.0819215234,0.0793944309,0.0776411118,0.1129253348,0.1103588376,0.117865942,0.1169790924,0.1179466095,0.1245740173,0.1188580243
41
- ercot_1H,0.0691227347,0.0764717873,0.0705278089,0.0721937651,0.0795933543,0.0716643825,0.0730120171,0.074077414,0.0829790251,0.0749658542,0.1808560818,0.081462577,0.1561551619,0.0818516593,0.156225403
42
- ercot_1M,0.0474946227,0.0484172593,0.0524891056,0.0669821394,0.05342761,0.0656316509,0.0511789478,0.051032866,0.0481692294,0.0493777886,0.0470737303,0.0593784221,0.266211768,0.0529377862,0.2937269539
43
- ercot_1W,0.0589590447,0.059191324,0.0586846132,0.0654530676,0.0684465686,0.0638612125,0.0599824842,0.0685063219,0.1453860532,0.1429765524,0.1469057526,0.1458645716,0.1442763271,0.1442763271,0.1446279654
44
- favorita_stores_1D,0.1382725291,0.1452467814,0.1518204361,0.1783829153,0.1485749632,0.1568098612,0.1742722556,0.1561883375,0.1788716882,0.1934442326,0.1871851772,0.1834860831,0.3056042403,0.2519854262,0.3071700007
45
- favorita_stores_1M,0.1303168498,0.2102531455,0.1893665791,0.1978285983,0.1158652566,0.2355426997,0.263652347,0.2560960427,0.1466952749,0.1385348588,0.1568281725,0.1535032243,0.1232989542,0.1900056936,0.1430777609
46
- favorita_stores_1W,0.128928905,0.1308373965,0.1345634833,0.1511486098,0.1259902738,0.1555078961,0.1579625078,0.1497412801,0.1436039165,0.1500959687,0.148442591,0.1443628684,0.1528069191,0.1528069191,0.1540484183
47
- favorita_transactions_1D,0.0611646157,0.0873474585,0.0820303043,0.0873474585,0.0773345503,0.0873474585,0.0873474585,0.0798803577,0.1005134217,0.1204928338,0.1010010868,0.0961165557,0.1561206006,0.1460640723,0.1564211233
48
- favorita_transactions_1M,0.0719262225,0.0741879094,0.0772057417,0.0891149079,0.0822258855,0.0863027538,0.0940793492,0.0944761617,0.0746712369,0.0833974167,0.075680572,0.0943706955,0.0830064558,0.0907197162,0.0979339545
49
- favorita_transactions_1W,0.0562127216,0.0628811317,0.0590786255,0.0686957029,0.070972002,0.0671727598,0.0628811317,0.0715127803,0.0683781244,0.0730921635,0.0708877588,0.0703343528,0.0709917221,0.0709917221,0.0733929446
50
- fred_md_2025/cee,0.0808948614,0.0893563021,0.0771422869,0.0893563021,0.0853241075,0.0893563021,0.0893563021,0.1094554538,0.0880950077,0.101570566,0.0874256578,0.0903405098,0.0912865269,0.1825383855,0.0899785994
51
- fred_md_2025/macro,0.0797789793,0.0832975223,0.0786031675,0.0832975223,0.0845430854,0.0832975223,0.0832975223,0.0866654116,0.0850931924,0.0913136788,0.0855845023,0.086868012,0.0864161201,0.1316369599,0.0862326509
52
- fred_qd_2025/cee,0.165729059,0.1558658059,0.146726247,0.1320567852,0.1495637866,0.1528913536,0.1553945123,0.2050228651,0.1535186178,0.1628828034,0.163525425,0.1604369975,0.1646972333,0.2083851339,0.1613227853
53
- fred_qd_2025/macro,0.1070199623,0.1036789802,0.1035667702,0.1019809656,0.1155847,0.1058608346,0.1074347071,0.1156803335,0.1102426328,0.1150225402,0.1130458034,0.1135594273,0.112650905,0.1422945023,0.1116643421
54
- gvar,0.0184834709,0.0187466032,0.0185361033,0.0183949311,0.0235774602,0.0185879215,0.0189676567,0.0219536834,0.018235926,0.0184923184,0.0183902988,0.0183729022,0.0185624258,0.0239340235,0.017942446
55
- hermes,0.0028845991,0.0029142732,0.0030851755,0.0043706582,0.003404404,0.0033616596,0.003208007,0.0036552635,0.0078905979,0.0063903024,0.0088396827,0.0081041083,0.0087068714,0.0087068714,0.0088381628
56
- hierarchical_sales_1D,0.7004948258,0.6943961620000001,0.6893573284000001,0.6904558182,0.7258024514,0.6949587405000001,0.6949587405000001,0.7362602293,0.8618716657000001,0.80726372,0.9335796714,0.9374910116,1.0676994622,1.0205006063,1.0792345285
57
- hierarchical_sales_1W,0.4327760696,0.4307300597,0.4324219674,0.4364300489,0.4384448647,0.4394375533,0.4394375533,0.4750745565,0.5484556556,0.5603942513,0.6528081954,0.5616531372,0.7169096172,0.7169096172,0.73438465
58
- hospital,0.0955333542,0.0891746506,0.0908275228,0.0951568279,0.0931978375,0.0947973169,0.0947973169,0.1026285514,0.0920567866,0.1056054849,0.0927931517,0.0992142502,0.117495615,0.0954293236,0.1240455657
59
- hospital_admissions_1D,0.5318945218,0.533603767,0.532626473,0.5320996389,0.5375386306000001,0.5332016895,0.5337376775,0.5358891719000001,0.5351516929,0.5348244904,0.5349606606,0.5510431179,0.7243229402,0.7622172844,0.7295191623
60
- hospital_admissions_1W,0.2115394623,0.212422525,0.2142321087,0.2188375845,0.2122697207,0.2152673571,0.214606831,0.2139370313,0.2126255133,0.212284724,0.2122781935,0.2190619932,0.2933695345,0.2933695345,0.30397943
61
- jena_weather_10T,0.2751553417,0.257587004,0.2777656166,0.2483462442,0.2988471952,0.3021136379,0.3021136379,0.3908659499,0.7879570897,0.7879570897,0.3862366249,0.3075604132,0.340848519,0.7879570897,0.5317361675
62
- jena_weather_1D,0.2763651371,0.2713017484,0.2731164291,0.2763100538,0.2843381079,0.2784405042,0.2784405042,0.306889223,0.3410053076,0.3394734252,0.3844678975,0.3648304911,0.3843897356,0.4190868366,0.4042778883
63
- jena_weather_1H,0.2537129368,0.2603537007,0.2506694068,0.2467585944,0.2825195241,0.2519024358,0.2519024358,0.435202554,0.3278975237,0.9374862075,0.3521687292,0.2954772817,0.328573375,0.7711870382,0.3343243943
64
- kdd_cup_2022_10T,1.3604882419,1.5299117744,1.5299117744,1.5299117744,2.9485943079,1.5299117744,1.5299117744,1.5299117744,3.3046866596,3.3046866596,2.0494638503,2.1184663236,2.0376436353,3.3046866596,2.1939117908
65
- kdd_cup_2022_1D,0.7152167618,0.7140720218000001,0.722069484,0.709543103,0.729861784,0.7286467254,0.7228399217,0.7455375254000001,0.7985714674000001,0.7844091415000001,0.8128879607,0.8038047969000001,0.8071428537,0.9081870615,0.8271189928
66
- kdd_cup_2022_30T,1.5203950584,1.9992301464,1.5899849832,1.6237983048,2.7372743011000003,1.3630170584,2.6893893838,1.8708190978,2.1525859416,2.579102248,2.3230794907,2.3053818822,2.2917796373,3.122066617,2.3595300138
67
- m5_1D,0.7033757567000001,0.7110159993,0.7024515271,0.7110159993,0.9158941507,0.7110159993,0.7110159993,0.735691011,0.9158941507,0.7716780305000001,0.7714367509000001,0.7779017687,1.0240883827,0.9158941507,1.0368541479
68
- m5_1M,0.4288782179,0.4248805046,0.4305847585,0.459651649,0.4364556372,0.4363167882,0.4455042779,0.4508921802,0.4417713284,0.4600670636,0.4605289102,0.491009295,0.4776364863,0.5107533932,0.5485711098
69
- m5_1W,0.4283166826,0.4334180355,0.4280506968,0.4278151095,0.4357982576,0.4286454916,0.4334180355,0.4258472919,0.4386759996,0.4387526214,0.4468327463,0.4475453794,0.5041812062000001,0.5041812062000001,0.5192105174
70
- proenfo_gfc12,0.0695905495,0.09096132,0.0953878213,0.09096132,0.0878337689,0.09096132,0.09096132,0.0814341474,0.140745189,0.1193260785,0.2331060618,0.1359507203,0.2325648576,0.1285183787,0.2455491483
71
- proenfo_gfc14,0.0263798785,0.0454557415,0.0447395099,0.0454557415,0.0314071138,0.0454557415,0.0454557415,0.022570387,0.0540108977,0.0571345754,0.0646636074,0.0579787859,0.1831386365,0.0586917939,0.1959836841
72
- proenfo_gfc17,0.0395739379,0.0744532838,0.0764463827,0.0744532838,0.0562544549,0.0744532838,0.0744532838,0.0343229823,0.0960090132,0.0943354612,0.1663142737,0.0931363594,0.1911468029,0.1077746021,0.2018542446
73
- redset_15T,0.2581138387,0.3049023062,0.2957181528,0.3032550395,0.2824990153,0.3051173747,0.3266223073,0.3414731026,0.3900802583,0.3900802583,0.3900802583,0.4040436536,0.5721419543,0.3900802583,0.5907099247
74
- redset_1H,0.2086091325,0.2327233687,0.2140746087,0.2279421866,0.2258856788,0.2229073554,0.2425440878,0.263667053,0.302437371,0.3273749292,2.3069740623,0.371760726,0.4976614714,0.3300818771,0.5004897475
75
- redset_5T,0.3293815106,0.3443454772,0.3807104856,0.343882215,0.3484145552,0.3707561105,0.4300963342,0.3967622221,0.6020359665,0.6915958703,0.4487639129,0.6252421260000001,0.6784450889,0.4487639129,0.7538361549
76
- restaurant,0.358380679,0.3569885604,0.3583980985,0.3731744513,0.3642114922,0.3649469204,0.3649469204,0.3637035079,0.3710609339,0.3996725455,0.4009865783,0.3923323192,0.612521477,0.483283326,0.6468708888
77
- rohlik_orders_1D,0.0560522966,0.0590882786,0.0571725398,0.0646083735,0.0655876726,0.0552303962,0.0613666862,0.0667062812,0.0628061324,0.0740682058,0.0657169782,0.0664489299,0.1082820654,0.0827216394,0.1096319526
78
- rohlik_orders_1W,0.0503461543,0.0541592546,0.0520526886,0.0591418616,0.0652046457,0.0612039004,0.0569869973,0.0675320886,0.0573217526,0.0584325351,0.0581583686,0.0573223703,0.058363314,0.058363314,0.059100195
79
- rohlik_sales_1D,0.2762769461,0.3586171567,0.3783946335,0.3974789381,0.4345725775,0.3820689023,0.3783308864,0.3645052612,0.4056582451,0.4094604254,0.4184724987,0.4130674899,0.4717368782,0.4345725775,0.4772062898
80
- rohlik_sales_1W,0.2291195095,0.2667129934,0.2736291289,0.2812094092,0.2151686251,0.2871065438,0.2846268117,0.292871207,0.2905908525,0.3070147634,0.3002878428,0.294593662,0.311866194,0.311866194,0.3224963248
81
- rossmann_1D,0.1197794937,0.2085952148,0.2251284003,0.2320613816,0.0979018956,0.2214855403,0.2176495418,0.2092144758,0.2277583107,0.2223706722,0.2360617861,0.2557922274,0.5480500698,0.2692451894,0.5516847163
82
- rossmann_1W,0.0964419879,0.1802897658,0.1696977001,0.1733398307,0.0791731263,0.1759210136,0.1760291811,0.1854728833,0.1783457696,0.1835633125,0.1836160459,0.1812564228,0.2192445789,0.2192445789,0.2424932998
83
- solar_1D,0.2379390113,0.2471472979,0.2452487931,0.2500299245,0.2466564849,0.2569396086,0.2532424137,0.2471724987,0.2494917773,0.2527682468,0.2511778109,0.2619624853,0.3013429433,0.3093768284,0.3458185181
84
- solar_1W,0.2001198977,0.246641323,0.2531014979,0.3023860455,0.1849420816,0.3419925272,0.2132549584,0.1854887605,0.3008096814,0.2914025486,0.2775774002,0.3495942652,0.326290369,0.326290369,0.4388745129
85
- solar_with_weather_15T,1.1523838531,1.4700251039,1.4235610306,1.1480220269,1.1661535196,1.3761328127,1.2911253296,1.5058858633,1.311486863,1.311486863,1.4215377569,1.5023058228,1.0179969072,1.311486863,1.2097884297
86
- solar_with_weather_1H,1.2584227458,1.2011471927,1.5260583486,1.4068397004,0.9096449066,1.4828350302,1.3260020718,1.4480908126,1.2681774691,1.2902403221,1.1464893281,1.5474270582,1.1464484423,1.2338736704,1.1473927319
87
- uci_air_quality_1D,0.2703591761,0.3069281131,0.2942162712,0.3233137009,0.3105711883,0.2915518175,0.2842696743,0.2892992957,0.2860204957,0.3229408102,0.2790713324,0.2964460064,0.4314649024,0.3624341339,0.456071114
88
- uci_air_quality_1H,0.3364187218,0.371518901,0.3697669104,0.3658213586,0.3857780203,0.3903881013,0.3758005321,0.400704702,0.4116057828,0.4518040374,4.0641790986,0.4167998955,0.5250781342,0.4562693149,0.5444705039000001
89
- uk_covid_nation_1D/cumulative,0.0188431359,0.0172808705,0.0159650212,0.0158421656,0.0419449611,0.0173290129,0.0245629952,0.0455631685,0.0214682838,0.0188173242,0.0182502112,0.047922572,0.0579707756,0.0695790831,0.0458026743
90
- uk_covid_nation_1D/new,0.4026392743,0.3887864605,0.3817302555,0.3457811862,0.4174416304,0.3626234081,0.4166112363,0.4168794766,0.4527084805,0.4697780043,0.4591069408,0.4808448859,0.453881491,0.4987584807,0.4637164548
91
- uk_covid_nation_1W/cumulative,0.027964653,0.0420784587,0.0336664002,0.0338043142,0.0386651377,0.0277593429,0.0386007642,0.0525751226,0.0229528998,0.0670678648,0.0234671999,0.0519616026,0.0820604023,0.0820604023,0.0507871248
92
- uk_covid_nation_1W/new,0.7566535249,0.4691022187,0.6047020033,0.7679864317,0.626670666,0.5119306892000001,0.533506915,0.4364076927,0.4829665609,0.7762918919,0.4576220214,0.4545178637,0.4544002153,0.4544002153,0.4722695798
93
- uk_covid_utla_1D/new,0.4765254885,0.4222944811,0.4611622334,0.4977396607,0.4566554457,0.4184653059,0.4370788723,0.4043421954,0.5653157011000001,0.6831767932,0.5764029175000001,0.5472069114,0.560081014,0.5015514418,0.5699051917
94
- uk_covid_utla_1W/cumulative,0.1985057145,0.2217276141,0.2228221811,0.1818175469,0.1957054086,0.2224105477,0.1935101479,0.2817648932,0.1562370956,0.1529182278,0.1736827634,0.2025926664,0.2501822181,0.2501822181,0.198870188
95
- us_consumption_1M,0.0221474885,0.0262938315,0.0229767126,0.0234064611,0.0282917617,0.0248397756,0.025038723,0.0353930782,0.0240289312,0.0266722746,0.0232927346,0.0304996581,0.0367178954,0.0583924714,0.0302986122
96
- us_consumption_1Q,0.0334895655,0.0319971864,0.0341675981,0.0322923365,0.0508262731,0.0323032217,0.0322679118,0.0549728539,0.0338116094,0.0334090083,0.0345600061,0.0455343083,0.0568597171,0.0723187622,0.0433424644
97
- us_consumption_1Y,0.0613212422,0.0577691134,0.0570256105,0.0712195709,0.0673417844,0.1083728828,0.0879293952,0.1102996588,0.0638795553,0.0521022394,0.0765756212,0.1074392479,0.1702565216,0.1702565216,0.1056817938
98
- walmart,0.0933870822,0.1015809998,0.1053567082,0.1384944916,0.0943299681,0.1315481663,0.1172761619,0.1211136207,0.1773376018,0.1595972031,0.2950883508,0.1852148771,0.1967352033,0.1967352033,0.2281249762
99
- world_co2_emissions,0.089445687,0.0879381941,0.0871799563,0.0830718834,0.0868360951,0.093244922,0.0897831822,0.1067606712,0.081172869,0.0819489691,0.0843222712,0.0831107938,0.0984961833,0.0984961833,0.0830490989
100
- world_life_expectancy,0.0116658187,0.0112725816,0.0107911893,0.0150144563,0.0108183488,0.0176806053,0.0130603154,0.0145865259,0.0126706732,0.0130623952,0.0126002091,0.0137058759,0.0171300128,0.0171300128,0.0147433012
101
- world_tourism,0.1209655702,0.1209704466,0.1137896851,0.1073285565,0.0676485132,0.114122387,0.1171618253,0.1553527489,0.0681912079,0.073036734,0.0937603042,0.0556104314,0.1106580384,0.1106580384,0.0549742542
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
tables/pivot_WAPE_baseline_imputed.csv DELETED
@@ -1,101 +0,0 @@
1
- Task name,Chronos-2,TimesFM-2.5,TiRex,Toto-1.0,TabPFN-TS,Moirai-2.0,Chronos-Bolt,Sundial-Base,Stat. Ensemble,AutoARIMA,AutoETS,AutoTheta,Naive,Seasonal Naive,Drift
2
- ETT_15T,False,False,False,False,False,False,False,False,True,True,False,False,False,False,False
3
- ETT_1D,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
4
- ETT_1H,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
5
- ETT_1W,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
6
- LOOP_SEATTLE_1D,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
7
- LOOP_SEATTLE_1H,False,False,False,False,False,False,False,False,True,True,False,False,False,False,False
8
- LOOP_SEATTLE_5T,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
9
- M_DENSE_1D,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
10
- M_DENSE_1H,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
11
- SZ_TAXI_15T,False,False,False,False,False,False,False,False,True,True,False,False,False,False,False
12
- SZ_TAXI_1H,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
13
- australian_tourism,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
14
- bizitobs_l2c_1H,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
15
- bizitobs_l2c_5T,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
16
- boomlet_1062,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
17
- boomlet_1209,False,False,False,False,False,False,False,False,False,False,True,False,False,False,False
18
- boomlet_1225,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
19
- boomlet_1230,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
20
- boomlet_1282,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
21
- boomlet_1487,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
22
- boomlet_1631,False,False,False,False,False,False,False,False,True,True,False,False,False,False,False
23
- boomlet_1676,False,False,False,False,False,False,False,False,True,True,False,False,False,False,False
24
- boomlet_1855,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
25
- boomlet_1975,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
26
- boomlet_2187,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
27
- boomlet_285,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
28
- boomlet_619,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
29
- boomlet_772,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
30
- boomlet_963,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
31
- ecdc_ili,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
32
- entsoe_15T,False,False,False,False,False,False,False,False,True,True,False,False,False,False,False
33
- entsoe_1H,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
34
- entsoe_30T,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
35
- epf_be,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
36
- epf_de,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
37
- epf_fr,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
38
- epf_np,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
39
- epf_pjm,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
40
- ercot_1D,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
41
- ercot_1H,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
42
- ercot_1M,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
43
- ercot_1W,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
44
- favorita_stores_1D,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
45
- favorita_stores_1M,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
46
- favorita_stores_1W,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
47
- favorita_transactions_1D,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
48
- favorita_transactions_1M,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
49
- favorita_transactions_1W,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
50
- fred_md_2025/cee,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
51
- fred_md_2025/macro,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
52
- fred_qd_2025/cee,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
53
- fred_qd_2025/macro,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
54
- gvar,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
55
- hermes,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
56
- hierarchical_sales_1D,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
57
- hierarchical_sales_1W,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
58
- hospital,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
59
- hospital_admissions_1D,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
60
- hospital_admissions_1W,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
61
- jena_weather_10T,False,False,False,False,False,False,False,False,True,True,False,False,False,False,False
62
- jena_weather_1D,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
63
- jena_weather_1H,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
64
- kdd_cup_2022_10T,False,False,False,False,False,False,False,False,True,True,False,False,False,False,False
65
- kdd_cup_2022_1D,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
66
- kdd_cup_2022_30T,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
67
- m5_1D,False,False,False,False,True,False,False,False,True,False,False,False,False,False,False
68
- m5_1M,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
69
- m5_1W,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
70
- proenfo_gfc12,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
71
- proenfo_gfc14,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
72
- proenfo_gfc17,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
73
- redset_15T,False,False,False,False,False,False,False,False,True,True,True,False,False,False,False
74
- redset_1H,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
75
- redset_5T,False,False,False,False,False,False,False,False,False,False,True,False,False,False,False
76
- restaurant,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
77
- rohlik_orders_1D,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
78
- rohlik_orders_1W,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
79
- rohlik_sales_1D,False,False,False,False,True,False,False,False,False,False,False,False,False,False,False
80
- rohlik_sales_1W,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
81
- rossmann_1D,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
82
- rossmann_1W,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
83
- solar_1D,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
84
- solar_1W,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
85
- solar_with_weather_15T,False,False,False,False,False,False,False,False,True,True,False,False,False,False,False
86
- solar_with_weather_1H,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
87
- uci_air_quality_1D,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
88
- uci_air_quality_1H,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
89
- uk_covid_nation_1D/cumulative,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
90
- uk_covid_nation_1D/new,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
91
- uk_covid_nation_1W/cumulative,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
92
- uk_covid_nation_1W/new,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
93
- uk_covid_utla_1D/new,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
94
- uk_covid_utla_1W/cumulative,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
95
- us_consumption_1M,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
96
- us_consumption_1Q,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
97
- us_consumption_1Y,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
98
- walmart,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
99
- world_co2_emissions,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
100
- world_life_expectancy,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
101
- world_tourism,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
tables/pivot_WAPE_leakage_imputed.csv DELETED
@@ -1,101 +0,0 @@
1
- Task name,Chronos-2,TimesFM-2.5,TiRex,Toto-1.0,TabPFN-TS,Moirai-2.0,Chronos-Bolt,Sundial-Base,Stat. Ensemble,AutoARIMA,AutoETS,AutoTheta,Naive,Seasonal Naive,Drift
2
- ETT_15T,False,False,False,False,False,True,False,False,False,False,False,False,False,False,False
3
- ETT_1D,False,False,False,False,False,True,False,False,False,False,False,False,False,False,False
4
- ETT_1H,False,False,False,False,False,True,False,False,False,False,False,False,False,False,False
5
- ETT_1W,False,False,False,False,False,True,False,False,False,False,False,False,False,False,False
6
- LOOP_SEATTLE_1D,False,False,False,False,False,True,False,False,False,False,False,False,False,False,False
7
- LOOP_SEATTLE_1H,False,False,False,False,False,True,False,False,False,False,False,False,False,False,False
8
- LOOP_SEATTLE_5T,False,False,False,False,False,True,False,False,False,False,False,False,False,False,False
9
- M_DENSE_1D,False,False,False,False,False,True,False,False,False,False,False,False,False,False,False
10
- M_DENSE_1H,False,False,False,False,False,True,False,False,False,False,False,False,False,False,False
11
- SZ_TAXI_15T,False,False,False,False,False,True,False,False,False,False,False,False,False,False,False
12
- SZ_TAXI_1H,False,False,False,False,False,True,False,False,False,False,False,False,False,False,False
13
- australian_tourism,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
14
- bizitobs_l2c_1H,False,False,False,False,False,True,False,False,False,False,False,False,False,False,False
15
- bizitobs_l2c_5T,False,False,False,False,False,True,False,False,False,False,False,False,False,False,False
16
- boomlet_1062,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
17
- boomlet_1209,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
18
- boomlet_1225,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
19
- boomlet_1230,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
20
- boomlet_1282,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
21
- boomlet_1487,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
22
- boomlet_1631,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
23
- boomlet_1676,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
24
- boomlet_1855,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
25
- boomlet_1975,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
26
- boomlet_2187,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
27
- boomlet_285,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
28
- boomlet_619,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
29
- boomlet_772,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
30
- boomlet_963,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
31
- ecdc_ili,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
32
- entsoe_15T,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
33
- entsoe_1H,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
34
- entsoe_30T,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
35
- epf_be,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
36
- epf_de,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
37
- epf_fr,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
38
- epf_np,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
39
- epf_pjm,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
40
- ercot_1D,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
41
- ercot_1H,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
42
- ercot_1M,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
43
- ercot_1W,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
44
- favorita_stores_1D,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
45
- favorita_stores_1M,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
46
- favorita_stores_1W,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
47
- favorita_transactions_1D,False,True,False,True,False,True,False,False,False,False,False,False,False,False,False
48
- favorita_transactions_1M,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
49
- favorita_transactions_1W,False,True,False,False,False,False,False,False,False,False,False,False,False,False,False
50
- fred_md_2025/cee,False,True,False,True,False,True,False,False,False,False,False,False,False,False,False
51
- fred_md_2025/macro,False,True,False,True,False,True,False,False,False,False,False,False,False,False,False
52
- fred_qd_2025/cee,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
53
- fred_qd_2025/macro,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
54
- gvar,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
55
- hermes,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
56
- hierarchical_sales_1D,False,False,False,False,False,True,False,False,False,False,False,False,False,False,False
57
- hierarchical_sales_1W,False,False,False,False,False,True,False,False,False,False,False,False,False,False,False
58
- hospital,False,False,False,False,False,True,False,False,False,False,False,False,False,False,False
59
- hospital_admissions_1D,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
60
- hospital_admissions_1W,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
61
- jena_weather_10T,False,False,False,False,False,True,False,False,False,False,False,False,False,False,False
62
- jena_weather_1D,False,False,False,False,False,True,False,False,False,False,False,False,False,False,False
63
- jena_weather_1H,False,False,False,False,False,True,False,False,False,False,False,False,False,False,False
64
- kdd_cup_2022_10T,False,True,True,True,False,True,False,True,False,False,False,False,False,False,False
65
- kdd_cup_2022_1D,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
66
- kdd_cup_2022_30T,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
67
- m5_1D,False,True,False,True,False,True,False,False,False,False,False,False,False,False,False
68
- m5_1M,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
69
- m5_1W,False,True,False,False,False,False,False,False,False,False,False,False,False,False,False
70
- proenfo_gfc12,False,True,False,True,False,True,False,False,False,False,False,False,False,False,False
71
- proenfo_gfc14,False,True,False,True,False,True,False,False,False,False,False,False,False,False,False
72
- proenfo_gfc17,False,True,False,True,False,True,False,False,False,False,False,False,False,False,False
73
- redset_15T,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
74
- redset_1H,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
75
- redset_5T,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
76
- restaurant,False,False,False,False,False,True,False,False,False,False,False,False,False,False,False
77
- rohlik_orders_1D,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
78
- rohlik_orders_1W,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
79
- rohlik_sales_1D,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
80
- rohlik_sales_1W,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
81
- rossmann_1D,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
82
- rossmann_1W,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
83
- solar_1D,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
84
- solar_1W,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
85
- solar_with_weather_15T,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
86
- solar_with_weather_1H,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
87
- uci_air_quality_1D,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
88
- uci_air_quality_1H,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
89
- uk_covid_nation_1D/cumulative,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
90
- uk_covid_nation_1D/new,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
91
- uk_covid_nation_1W/cumulative,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
92
- uk_covid_nation_1W/new,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
93
- uk_covid_utla_1D/new,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
94
- uk_covid_utla_1W/cumulative,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
95
- us_consumption_1M,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
96
- us_consumption_1Q,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
97
- us_consumption_1Y,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
98
- walmart,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
99
- world_co2_emissions,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
100
- world_life_expectancy,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
101
- world_tourism,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
tables/pivot_WQL.csv DELETED
@@ -1,101 +0,0 @@
1
- Task name,Chronos-2,TiRex,TimesFM-2.5,Toto-1.0,TabPFN-TS,Moirai-2.0,Chronos-Bolt,Sundial-Base,Stat. Ensemble,AutoARIMA,AutoETS,AutoTheta,Seasonal Naive,Naive,Drift
2
- ETT_15T,0.0881409166,0.0914609728,0.0925313491,0.0951691601,0.0966499793,0.0933383153,0.0933383153,0.0969683943,0.1224205307,0.1224205307,0.1889663006,0.170235374,0.1224205307,0.2051287363,0.2108337564
3
- ETT_1D,0.2599714564,0.2612366718,0.267888696,0.2741924035,0.3179643477,0.2669855109,0.2669855109,0.3129149392,0.3227852613,0.3320927513,0.3649904644,0.360480833,0.3642035745,0.3538102937,0.3621092269
4
- ETT_1H,0.1929432658,0.1923900276,0.1916135933,0.189981304,0.2034494101,0.2059476241,0.2059476241,0.2146782131,0.2620350459,0.2275419988,0.3554423083,0.387905148,0.2597090183,0.4903424451,0.5136644933
5
- ETT_1W,0.4180629801,0.3834384084,0.3998766685,0.3901701003,0.4148319078,0.3737931634,0.3737931634,0.4643316617,0.4495446321,0.4761461158,0.4577441806,0.4986518854,0.4614224698,0.4614224698,0.4961494694
6
- LOOP_SEATTLE_1D,0.0294338102,0.029926259,0.0292182088,0.0313094796,0.0295572487,0.0304002738,0.0304002738,0.0326217509,0.0310410872,0.0306907047,0.0311914855,0.0325479384,0.0397058571,0.0919262659,0.0978699313
7
- LOOP_SEATTLE_1H,0.0547949415,0.0562291392,0.0529133781,0.0599067065,0.0580208445,0.0662523771,0.0662523771,0.0664487294,0.1307515175,0.1307515175,0.2388070951,0.2528752457,0.1307515175,0.3038598558,0.3206568541
8
- LOOP_SEATTLE_5T,0.0574848141,0.0594513843,0.0643709018,0.0606719844,0.0689450513,0.0781392419,0.0781392419,0.0714930823,0.1151931596,0.1111745205,0.1270606325,0.121969972,0.081199984,0.1936404655,0.210202567
9
- M_DENSE_1D,0.0712116921,0.0821914373,0.0773717212,0.0906527349,0.0776412798,0.0817335467,0.0817335467,0.0844361527,0.1131422312,0.1051447846,0.1323504645,0.1459052349,0.1367572058,0.2323397334,0.2363624963
10
- M_DENSE_1H,0.119830846,0.1208851977,0.1143436056,0.1267713853,0.1296769427,0.1209575592,0.1209575592,0.1339606641,0.2346087824,0.2211301613,12.8518608164,0.7918015547,0.2731296131,0.84829413,0.8946267050000001
11
- SZ_TAXI_15T,0.1878149412,0.1889248146,0.1894354422,0.1918294193,0.2040341404,0.197437778,0.197437778,0.2118998785,0.2672484294,0.2672484294,0.9991056751,0.2434722417,0.2672484294,0.6619538384,0.6804962505000001
12
- SZ_TAXI_1H,0.1329118925,0.1368741884,0.1394973218,0.1399772683,0.1666049443,0.1447212932,0.1447212932,0.1764986928,0.2449234495,0.2187159408,4510502977.541462,0.3559208311,0.2910650923,0.9157567452,1.0097515601
13
- australian_tourism,0.0714093583,0.0861105624,0.0761527549,0.1044141415,0.07310177,0.1053900171,0.1140447009,0.0836038879,0.0747720206,0.0866216851,0.0760110551,0.0823354804,0.0905870679,0.1922018184,0.2141353268
14
- bizitobs_l2c_1H,0.2574969401,0.3395892762,0.3062390652,0.4180692521,0.3020415377,0.3259227696,0.3259227696,0.4028991374,1.2739406784,1.4044947577,1.4288888475,1.3542131559,2.0969368333,1.3379066541,1.3508241876
15
- bizitobs_l2c_5T,0.3972981771,1.2724528657,0.7904916189000001,1.0846777557,0.6797159368,1.2750077013,1.2750077013,0.5857720953000001,1.5128526941,1.8771775481,1.6113720868,1.6069322946,2.2877704895,1.4507804453,1.731649134
16
- boomlet_1062,0.4575715743,0.462540047,0.4710064002,0.4560339911,0.4854876351,0.4872201343,0.5409239931000001,0.5396810790000001,0.7822110511,0.5907259586,1.0658179181,1.085539266,0.7418110944,3.1996986673,3.4646472151
17
- boomlet_1209,0.2624618712,0.2759885511,0.2609844697,0.2511164388,0.3699793008,0.2879466627,0.301826322,0.2937933689,1.0148176093,0.4535022053,0.5015055777,1.1157526247,0.5015055777,1.328999921,1.4420052382000002
18
- boomlet_1225,0.0982049933,0.0990409314,0.1000748977,0.0968533979,0.1144239787,0.1024577962,0.1066372427,0.1172112941,0.1451941336,0.12260998,0.1651551358,0.1711256418,0.3809038981,0.3809038981,0.3876340759
19
- boomlet_1230,0.2619779044,0.2653064283,0.2547608466,0.2477353188,0.3987332881,0.2744689053,0.3010213735,0.2814650284,0.9994018454,0.4477425115,228079607857629.03,1.1951987922,0.5006062673,1.7490874961,1.895555107
20
- boomlet_1282,0.2857642723,0.2813823066,0.2769507583,0.2786303196,0.292132349,0.2943955518,0.3174313196,0.3125554342,0.49773322,0.3750317971,0.62613098,0.6672579187000001,1.0473420209,1.0473420209,1.0675288199
21
- boomlet_1487,0.1664420355,0.1679334305,0.1621616582,0.1572610369,0.2936465116,0.179562264,0.190011281,0.1963999731,0.2664583485,0.2570055801,0.2835559204,0.3266562805,0.3287160259,2.1936503487,2.3761204352
22
- boomlet_1631,0.2500222003,0.2578011825,0.2521962154,0.2530865122,0.294595714,0.2594328079,0.2712471357,0.2762733263,0.3678343488,0.3678343488,0.3219452018,0.3246702609,0.3678343488,0.5939295732000001,0.6115095201
23
- boomlet_1676,0.2538630466,0.2548401001,0.2519960915,0.2495295993,0.2853155601,0.2579772293,0.2757684538,0.274422727,0.3899388202,0.3899388202,0.3561141453,0.3689668234,0.3899388202,0.5376397046,0.5530190574
24
- boomlet_1855,0.1371847152,0.1348268939,0.1418942616,0.1355059408,0.1913295293,0.139558043,0.1402605794,0.1563253928,0.2389634823,0.2316298817,0.2553622581,0.2591897672,0.3053456375,0.5272950774,0.5309525567
25
- boomlet_1975,0.0754861483,0.1095269694,0.0946619153,0.0726927455,0.1155713746,0.1195154441,0.1030843609,0.1103445012,0.3109341662,0.3101025558,0.3508947927,0.3645838608,0.490065287,0.3511931898,0.3522290761
26
- boomlet_2187,0.2318940307,0.2304085287,0.2575487452,0.24435445,0.2994495011,0.2578882698,0.2524757438,0.2800640842,0.4312238249,0.4412020452,0.4456954551,0.4740037125,0.5699897289,1.0418096521,1.049295268
27
- boomlet_285,0.1346407915,0.148143136,0.1683399577,0.1331450908,0.1553438735,0.1889532567,0.2234209762,0.2244579194,0.3030251372,0.2917086037,0.3012758228,0.3165758913,1.2032068551,1.2032068551,1.2258270453
28
- boomlet_619,0.2302330587,0.2471279568,0.2458341339,0.2162579975,0.2349216897,0.2356420104,0.3764453393,0.2649462131,0.6585898854000001,0.4527380943,0.7635945062,0.6993259862,0.9678549923,0.9678549923,0.9877621571
29
- boomlet_772,0.1331013781,0.136682574,0.1358824185,0.1307594429,0.1546550252,0.1437870275,0.155831971,0.1611776721,0.4436068427,0.3102148884,233223016.4792193,0.5422949313000001,0.9858607218,0.9858607218,1.0040136572
30
- boomlet_963,0.3166849612,0.3257730396,0.3291269599,0.3152013005,0.368648075,0.3420300574,0.3596501239,0.3456713575,0.6331985559000001,0.5019102045,0.7424657093,0.716591367,0.811345873,0.811345873,0.8256079501
31
- ecdc_ili,0.3096012763,0.3706244122,0.3434282741,0.3944662068,0.3232828815,0.3850819865,0.4167010575,0.4694310556,0.5427352164,0.5348657716,0.5818744542000001,0.5760490118,0.5547015104,0.5547015104,0.5751070381
32
- entsoe_15T,0.0332921923,0.03370606,0.0334792124,0.0413516905,0.0335205629,0.0343344442,0.0362665583,0.0499695365,0.0566124331,0.0566124331,0.313985467,0.04302748,0.0566124331,0.1154915649,0.1262425683
33
- entsoe_1H,0.0261903898,0.0293722588,0.029016943,0.0302241335,0.0272967255,0.033285571,0.0281751907,0.050980506,0.0660357719,0.0666871832,0.1446894285,0.0693891454,0.0798215745,0.144830171,0.1529602098
34
- entsoe_30T,0.029067509,0.0314140317,0.0388367365,0.0301774471,0.0321818804,0.0318440586,0.0321248654,0.0485585461,0.0612238614,0.0731621073,0.1815717143,0.0571609073,0.0725922166,0.1142494542,0.1132384606
35
- epf_be,0.0901568483,0.0962218885,0.0904647786,0.1057693667,0.0932975438,0.0968269743,0.106932535,0.116974555,0.2109061816,0.1868416274,0.2658805243,0.2582438044,0.2012625857,0.5357212884,0.5396597512
36
- epf_de,0.24071768,0.468452292,0.4775486473,0.5515425934,0.2426255873,0.4585770885,0.4643713196,0.5102784096,0.4882154408,0.5432797572,0.5287818089,0.6490481061000001,0.5919144005,0.5286529239000001,0.5344012453
37
- epf_fr,0.0548184681,0.063925129,0.0640304463,0.0682821872,0.0491162423,0.0646047834,0.0684544774,0.0719692742,0.1676570118,0.171487674,0.1386675645,0.2296495476,0.1818024008,0.5500836774,0.5542629353
38
- epf_np,0.0297236499,0.0438147562,0.0519221,0.0471320493,0.0293296573,0.0419786745,0.0445199614,0.0428252373,0.05738593,0.0636813178,0.086372811,0.0578512541,0.0691889058,0.0868798682,0.0869585173
39
- epf_pjm,0.0667748898,0.071403604,0.0757086151,0.0799833604,0.0739926826,0.0766169612,0.0739331273,0.084093308,0.0862614181,0.0855296797,0.1606961463,0.1068456977,0.0908421958,0.1641666584,0.1656245552
40
- ercot_1D,0.0597422214,0.0583644776,0.0590120341,0.0621409451,0.0688811199,0.0637608291,0.0620146905,0.0665392831,0.0936050684,0.0865494548,0.1027502478,0.1055339552,0.1044921679,0.1043182678,0.1051661229
41
- ercot_1H,0.0517757195,0.0542294904,0.0584985426,0.0555864688,0.0615615188,0.0563341027,0.0597259069,0.0625128045,0.0642267414,0.0597358018,0.1494485063,0.0646341807,0.0682466944,0.1331050238,0.1354763369
42
- ercot_1M,0.0374032871,0.0419160577,0.0380629909,0.0530588211,0.0407906509,0.0509930124,0.0398626935,0.0434627402,0.0375336712,0.0388325707,0.0371511279,0.0470765052,0.0427842586,0.2106942527,0.2307212042
43
- ercot_1W,0.046153037,0.0457429263,0.0465659059,0.0515355854,0.0531508617,0.0502061941,0.0467287195,0.0583864951,0.1138242996,0.1129826874,0.1134717335,0.1163159858,0.1143459151,0.1143459151,0.1147730701
44
- favorita_stores_1D,0.1111436033,0.1242660249,0.1184216613,0.1439165317,0.1204039869,0.1278709711,0.1418629323,0.1353609503,0.1606265395,0.1647292421,0.1672181851,0.1778642628,0.2375760789,0.4079240646,0.4110111744
45
- favorita_stores_1M,0.1214689726,0.1421527991,0.1508910378,0.1391907522,0.0943255732,0.1725604577,0.1852146109,0.2222006124,0.1265354908,0.1314480379,0.1328922997,0.1244588255,0.1715121001,0.1701131599,0.1843808726
46
- favorita_stores_1W,0.108858649,0.1134128786,0.109472936,0.1223103152,0.1011036417,0.1243048273,0.1268154753,0.1312294599,0.1336292959,0.1331314369,0.1429768358,0.1407957933,0.1608274596,0.1608274596,0.1626164075
47
- favorita_transactions_1D,0.0493905048,0.067704191,0.0735763953,0.0735763953,0.0603391606,0.0735763953,0.0735763953,0.0710714949,0.094900864,0.1055051904,0.0944759338,0.0991455646,0.1403339153,0.2372471038,0.2388998485
48
- favorita_transactions_1M,0.0604582877,0.0683964364,0.0642577109,0.0770716759,0.0718016091,0.0756335151,0.0799691906,0.0834713904,0.0705845865,0.0776326578,0.0709936943,0.0829960463,0.0855815678,0.1052862092,0.1152703332
49
- favorita_transactions_1W,0.0471234505,0.049259837,0.0528246684,0.0575771001,0.0575076503,0.0569446098,0.0528246684,0.0632163955,0.0648065086,0.0648478224,0.0694461916,0.0703094331,0.0783787891,0.0783787891,0.080280481
50
- fred_md_2025/cee,0.0668234044,0.0670834958,0.0750783838,0.0750783838,0.0743757483,0.0750783838,0.0750783838,0.0954701869,0.1051946757,0.133660425,0.0757646768,0.1182489158,0.2073879582,0.1174362958,0.1155920484
51
- fred_md_2025/macro,0.0658448953,0.0651736736,0.0689005701,0.0689005701,0.0703198143,0.0689005701,0.0689005701,0.0758142866,0.0780002055,0.0859787221,0.0754502178,0.0815239103,0.119592083,0.0816199937,0.0813235213
52
- fred_qd_2025/cee,0.1349362833,0.1205702323,0.1290291477,0.1111966207,0.1232875729,0.1271824649,0.1238446163,0.1631968012,0.1373877839,0.1474873424,0.1365938852,0.1482369083,0.194192155,0.1537726616,0.1492650928
53
- fred_qd_2025/macro,0.087749288,0.0847291191,0.0852353396,0.0836177008,0.0926080385,0.0863520335,0.0870314598,0.1012011908,0.0918310561,0.0955504799,0.0949233782,0.0954220424,0.1198022215,0.0963745296,0.0950284899
54
- gvar,0.0149820688,0.0150792847,0.0152665936,0.0149166365,0.0179419087,0.015061142,0.015482776,0.0185296964,0.0162937715,0.0169170494,0.0159433726,0.0166324554,0.0212211567,0.0176762713,0.0174836229
55
- hermes,0.00225818,0.0024187939,0.0022928048,0.0036102677,0.0026219625,0.0026712263,0.0025240351,0.0031453384,0.0061269301,0.0050407278,0.0073879456,0.0068258834,0.0087083111,0.0087083111,0.0090940295
56
- hierarchical_sales_1D,0.5714810084,0.5556084899,0.5615462267,0.5599444088000001,0.5928670205000001,0.5634020932,0.5634020932,0.647815962,0.8177303567,0.6915383974,0.9358165942,0.9689367577,1.1222145629,1.6764214744,1.6911406182
57
- hierarchical_sales_1W,0.3648561948,0.3675267983,0.36900549,0.3702396077,0.3741749103,0.3762527696,0.3762527696,0.4228486488,0.465201591,0.4672185482,7.8275973261,0.4883602498,0.9260072924,0.9260072924,0.9465583798
58
- hospital,0.0748078223,0.0726720337,0.0714240645,0.0782312026,0.0744330876,0.075323756,0.075323756,0.0900986355,0.0749195627,0.0845424144,0.0759570393,0.0813819141,0.0783920641,0.1042062258,0.1105393325
59
- hospital_admissions_1D,0.4112482559,0.4117757474,0.4124642645,0.4120033633,0.4170562141,0.4120897736,0.4125280894,0.4526293478,0.41312756,0.4121681663,0.4122712942,0.4263733391,0.6361459769000001,0.9837276521,0.9916738218
60
- hospital_admissions_1W,0.1624167733,0.1647817222,0.1632100946,0.1680866908,0.163762699,0.1651659256,0.1652841678,0.1802484199,0.1630497452,0.1631143081,0.1628325575,0.168270042,0.2969374559,0.2969374559,0.3078008055
61
- jena_weather_10T,0.2528507582,0.2661828374,0.2127668736,0.2353999499,0.2551716964,0.2625552838,0.2625552838,0.3371179261,1.7057621919,1.7057621919,3.1495387185,3.5724878985,1.7057621919,3.6828586054,3.8552910899
62
- jena_weather_1D,0.2257062567,0.2210204491,0.218506197,0.2246469289,0.2320364869,0.2254046561,0.2254046561,0.2665635899,0.3084284928,0.3017046194,0.3511726073,0.352949988,0.4719762386,0.6992484433,0.7361988018000001
63
- jena_weather_1H,0.2250019726,0.2168159034,0.2233014541,0.2068719624,0.2343045768,0.234099159,0.234099159,0.4350680693,1.0549343053,0.8256929905,1.4084504179,1.6859107034,1.2878361856,1.6601789319,1.6730314795
64
- kdd_cup_2022_10T,1.2012691577,1.3753457151,1.3753457151,1.3753457151,2.3282104591,1.3753457151,1.3753457151,1.3753457151,3.4658735242,3.4658735242,2.5986419348,2.5543058657,3.4658735242,2.6760920983,2.9246115818
65
- kdd_cup_2022_1D,0.5599962178,0.556621323,0.5527344226,0.5570149360000001,0.5680073145,0.5630864114,0.5631888802,0.6469029607,0.5920639476,0.5843812529,0.6089510673,0.5966451508,0.75069981,0.9265198159,0.948426295
66
- kdd_cup_2022_30T,1.3117734404,1.3401124353,1.6757596515,1.3756596821,2.2207570053,1.2046794654,2.2656435299,1.6183676077,2.2310513851,2.1850967479,2.6468743604,2.5972049691,3.2580293089,2.5790907336,2.6373925567
67
- m5_1D,0.5566648803,0.5522750547,0.5619946767,0.5619946767,0.8588793502000001,0.5619946767,0.5619946767,0.6369837787,0.8588793502000001,0.611489809,0.6156373922,0.6265285781000001,0.8588793502000001,1.352981474,1.3656864863
68
- m5_1M,0.3477280487,0.3446529974,0.3370295405,0.3648378977,0.3466619129,0.3456589364,0.3566383823,0.3886462021,0.3701215676,0.380094291,0.4320692413,0.4195249159,0.4285745193,0.4471596243,0.5002848742
69
- m5_1W,0.3375480227,0.3359465585,0.3409590155,0.3368808055,0.3436698517,0.3361267514,0.3409590155,0.3622685986,0.3617147564,0.3580006782,0.3728147004,0.3767071031,0.5198944018,0.5198944018,0.5321822364000001
70
- proenfo_gfc12,0.0555966984,0.0771150803,0.077263494,0.077263494,0.0702222225,0.077263494,0.077263494,0.0732963269,0.1181658339,0.0987456528,0.2072982242,0.1250899583,0.1088404134,0.2075379042,0.2175193024
71
- proenfo_gfc14,0.0210605981,0.0353901819,0.0375513457,0.0375513457,0.0252054415,0.0375513457,0.0375513457,0.0204786531,0.0444124312,0.0464290142,0.0544938011,0.0519159577,0.0529491741,0.158759622,0.1683589627
72
- proenfo_gfc17,0.0315349181,0.0597007945,0.0608284875,0.0608284875,0.0440642892,0.0608284875,0.0608284875,0.0315794369,0.0769991028,0.0761960672,0.146648178,0.0769725348,0.0897222269,0.1691034077,0.1777795871
73
- redset_15T,0.2174028754,0.2431114555,0.2501147518,0.2510706717,0.2325884637,0.2504748238,0.2713077355,0.2914044606,0.4607365658,0.4607365658,0.4607365658,0.940375013,0.4607365658,1.565727146,1.6075485006
74
- redset_1H,0.1754538498,0.1792595698,0.1953408446,0.1912104253,0.1873583276,0.1892621749,0.2027229088,0.2287683337,0.3644260201,0.347358315,3.3022819464,0.471399676,0.4120467256,0.8881015738,0.8935980201
75
- redset_5T,0.2706931762,0.3109114114,0.288140782,0.2789818321,0.289831124,0.3116496574,0.3706331476,0.3372367613,0.9331343204,0.6814341656,0.5026322375,1.1479851264,0.5026322375,2.8198686088,3.0482376442
76
- restaurant,0.2820261417,0.282683528,0.2808265082,0.2932229182,0.286941911,0.2874369433,0.2874369433,0.3121784735,0.2987534022,0.3174475777,0.4313426382,0.3228884373,0.4263793897,0.7194392994000001,0.7547545082
77
- rohlik_orders_1D,0.0453576141,0.046778087,0.0473405217,0.0531957347,0.0585028628,0.0454924381,0.0495487283,0.0570594271,0.0551848097,0.0603755941,0.0637016666,0.0607226711,0.0730389024,0.1384185633,0.141017357
78
- rohlik_orders_1W,0.0419834034,0.0425926735,0.0430425121,0.0489199152,0.049953361,0.0500948995,0.047050427,0.0608989622,0.0465205009,0.0471291762,0.046928104,0.0464560362,0.0498648091,0.0498648091,0.0497673655
79
- rohlik_sales_1D,0.2203668325,0.3154378947,0.2983877224,0.3351760018,0.3727953997,0.3202051989,0.3139840107,0.3250144355,0.3425447103,0.3459201995,0.3543382966,0.3563233504,0.3727953997,0.4099413728,0.4141182186
80
- rohlik_sales_1W,0.1860678461,0.2252347071,0.2196835891,0.2348251568,0.1697896851,0.2364913465,0.2336631822,0.2594374504,0.2595910509,0.2670259076,4.0491052559,0.2655509054,0.3323396817,0.3323396817,0.3393924276
81
- rossmann_1D,0.0954525576,0.1837160416,0.171116383,0.1931728074,0.0772288962,0.1799313223,0.178806336,0.1802362487,0.1969163908,0.1908416644,0.2028079674,0.291009868,0.3139894604,0.93885619,0.9579696488
82
- rossmann_1W,0.08024438,0.1304017962,0.1350575869,0.1345092339,0.0659741153,0.1342178268,0.1317076013,0.1572071227,0.135127457,0.1410069966,0.1401558708,0.1385267381,0.2508975252,0.2508975252,0.2680805063
83
- solar_1D,0.1855480731,0.1929553199,0.1938342095,0.1955625549,0.1919496514,0.2003849004,0.1990286403,0.2094179217,0.2041438251,0.2053532934,0.2049319678,0.2116725603,0.2794918566,0.4319792148,0.4569554917
84
- solar_1W,0.1513634778,0.1885658631,0.1848997811,0.2335483112,0.1459644443,0.2786290198,0.1573930974,0.1567824467,0.2181202588,0.2154878912,0.2063617654,0.2389863753,0.241539109,0.241539109,0.3053960241
85
- solar_with_weather_15T,0.9550528101,1.2067686983,1.2404817956,0.9998316485,0.9712352474,1.1204703544,1.1300785408,1.3507714502,1.4073798197,1.4073798197,1.9572357231,3.2872524251,1.4073798197,1.6964307303,1.7761051768
86
- solar_with_weather_1H,0.9780600229,1.2498913502,0.9695951652,1.2191318813,0.7960101453,1.2285296788,1.0189950233,1.3598337832,1.1487515083,1.2702665577,1.3928226357,2.6714879984,1.3170887607,1.3916210721,1.3968565452
87
- uci_air_quality_1D,0.2146017914,0.2321704936,0.2425060369,0.2553475038,0.239766452,0.2299092189,0.2228595882,0.2497182101,0.2303977966,0.2530270906,0.2425004358,0.2579293608,0.2922307509,0.3990393174,0.4166124807
88
- uci_air_quality_1H,0.2626699279,0.2890236922,0.2903775779,0.2863033352,0.3066820684,0.3062706804,0.3020104526,0.3368853083,0.5268864008,0.3923535075,20468.2757052641,0.6724046824000001,0.460867968,0.8360828268,0.8759093056
89
- uk_covid_nation_1D/cumulative,0.0161921475,0.0138342964,0.0153292336,0.0125938684,0.0316628726,0.0145084122,0.0190395107,0.0397848581,0.0188346391,0.0173381483,0.0163459748,0.0435228041,0.0616683882,0.0540829702,0.0420838658
90
- uk_covid_nation_1D/new,0.3207938344,0.3109536889,0.3156210831,0.2838323856,0.3652919167,0.295667223,0.3374595917,0.3704647201,0.6131520742000001,0.6717556157,0.7010568349,0.6249699219,0.7590347607,0.6807093543,0.6959726061
91
- uk_covid_nation_1W/cumulative,0.0231629135,0.0306531397,0.0334625898,0.0259156466,0.0313019374,0.0235252689,0.0308278174,0.0470469389,0.0198408228,0.0621980203,0.0195175599,0.0457146098,0.0708838512,0.0708838512,0.0450304907
92
- uk_covid_nation_1W/new,0.577389366,0.5056475261,0.3916377081,0.5874941513,0.5181874025000001,0.4243048101,0.4123778016,0.346954435,0.4963902021,0.7570660296,0.4600308825,0.4631006396,0.4524501242,0.4524501242,0.4739863292
93
- uk_covid_utla_1D/new,0.3910187501,0.3797951228,0.3533112754,0.4097196009,0.3768120784,0.3538288145,0.3616969038,0.3594274377,0.5001590872,0.6134348659000001,0.5094112038,0.476165342,0.4420318364,0.5157896779,0.5265475783
94
- uk_covid_utla_1W/cumulative,0.1710838548,0.2003527874,0.1901138083,0.1555521636,0.16972636,0.195409151,0.1670758111,0.2660261673,0.138335546,0.1351972799,0.1685579648,0.186827715,0.2340614394,0.2340614394,0.1835390955
95
- us_consumption_1M,0.0197271602,0.0197402218,0.0226701155,0.0205041485,0.0243746544,0.0218430056,0.0218589731,0.032429082,0.0214320964,0.0239150894,0.0201648123,0.0272716281,0.0497079002,0.032661543,0.0266511556
96
- us_consumption_1Q,0.0274404821,0.0279758108,0.026686332,0.0270793373,0.039451329,0.0274257255,0.0277102453,0.050684032,0.0294259535,0.030008464,0.0292799577,0.0412327495,0.0619774434,0.0509220091,0.0386050624
97
- us_consumption_1Y,0.049885574,0.0438966964,0.0465564099,0.0546159459,0.0536317719,0.0851402532,0.0656167649,0.0997271328,0.0515666785,0.0428692104,0.0592817405,0.0967727372,0.1514273794,0.1514273794,0.0943820837
98
- walmart,0.0739271756,0.0849769317,0.0803039051,0.113539905,0.0751515146,0.1057545178,0.0950021434,0.1036346439,0.1643578174,0.1319843981,119300400139.46916,0.1996789224,0.3075011099,0.3075011099,0.3407542314
99
- world_co2_emissions,0.0729773135,0.0707450544,0.0751862129,0.0712556895,0.0717195922,0.076153015,0.0727688426,0.0955702861,0.0701479592,0.0705282623,0.0887646329,0.0742405541,0.0832284265,0.0832284265,0.073077502
100
- world_life_expectancy,0.0095948731,0.0089847076,0.0097525655,0.0120911181,0.0093362704,0.0144690768,0.0108645301,0.0129798805,0.010866463,0.0112841979,0.0107918452,0.0118279018,0.0143077928,0.0143077928,0.0130987043
101
- world_tourism,0.0908975708,0.0849997606,0.0984825726,0.0868200211,0.0601786476,0.0894951758,0.0889419278,0.1403522964,0.0552036802,0.0578924108,0.0724923711,0.0479228397,0.0866853455,0.0866853455,0.0439170643
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
tables/pivot_WQL_baseline_imputed.csv DELETED
@@ -1,101 +0,0 @@
1
- Task name,Chronos-2,TiRex,TimesFM-2.5,Toto-1.0,TabPFN-TS,Moirai-2.0,Chronos-Bolt,Sundial-Base,Stat. Ensemble,AutoARIMA,AutoETS,AutoTheta,Seasonal Naive,Naive,Drift
2
- ETT_15T,False,False,False,False,False,False,False,False,True,True,False,False,False,False,False
3
- ETT_1D,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
4
- ETT_1H,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
5
- ETT_1W,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
6
- LOOP_SEATTLE_1D,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
7
- LOOP_SEATTLE_1H,False,False,False,False,False,False,False,False,True,True,False,False,False,False,False
8
- LOOP_SEATTLE_5T,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
9
- M_DENSE_1D,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
10
- M_DENSE_1H,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
11
- SZ_TAXI_15T,False,False,False,False,False,False,False,False,True,True,False,False,False,False,False
12
- SZ_TAXI_1H,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
13
- australian_tourism,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
14
- bizitobs_l2c_1H,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
15
- bizitobs_l2c_5T,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
16
- boomlet_1062,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
17
- boomlet_1209,False,False,False,False,False,False,False,False,False,False,True,False,False,False,False
18
- boomlet_1225,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
19
- boomlet_1230,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
20
- boomlet_1282,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
21
- boomlet_1487,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
22
- boomlet_1631,False,False,False,False,False,False,False,False,True,True,False,False,False,False,False
23
- boomlet_1676,False,False,False,False,False,False,False,False,True,True,False,False,False,False,False
24
- boomlet_1855,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
25
- boomlet_1975,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
26
- boomlet_2187,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
27
- boomlet_285,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
28
- boomlet_619,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
29
- boomlet_772,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
30
- boomlet_963,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
31
- ecdc_ili,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
32
- entsoe_15T,False,False,False,False,False,False,False,False,True,True,False,False,False,False,False
33
- entsoe_1H,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
34
- entsoe_30T,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
35
- epf_be,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
36
- epf_de,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
37
- epf_fr,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
38
- epf_np,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
39
- epf_pjm,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
40
- ercot_1D,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
41
- ercot_1H,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
42
- ercot_1M,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
43
- ercot_1W,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
44
- favorita_stores_1D,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
45
- favorita_stores_1M,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
46
- favorita_stores_1W,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
47
- favorita_transactions_1D,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
48
- favorita_transactions_1M,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
49
- favorita_transactions_1W,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
50
- fred_md_2025/cee,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
51
- fred_md_2025/macro,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
52
- fred_qd_2025/cee,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
53
- fred_qd_2025/macro,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
54
- gvar,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
55
- hermes,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
56
- hierarchical_sales_1D,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
57
- hierarchical_sales_1W,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
58
- hospital,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
59
- hospital_admissions_1D,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
60
- hospital_admissions_1W,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
61
- jena_weather_10T,False,False,False,False,False,False,False,False,True,True,False,False,False,False,False
62
- jena_weather_1D,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
63
- jena_weather_1H,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
64
- kdd_cup_2022_10T,False,False,False,False,False,False,False,False,True,True,False,False,False,False,False
65
- kdd_cup_2022_1D,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
66
- kdd_cup_2022_30T,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
67
- m5_1D,False,False,False,False,True,False,False,False,True,False,False,False,False,False,False
68
- m5_1M,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
69
- m5_1W,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
70
- proenfo_gfc12,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
71
- proenfo_gfc14,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
72
- proenfo_gfc17,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
73
- redset_15T,False,False,False,False,False,False,False,False,True,True,True,False,False,False,False
74
- redset_1H,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
75
- redset_5T,False,False,False,False,False,False,False,False,False,False,True,False,False,False,False
76
- restaurant,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
77
- rohlik_orders_1D,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
78
- rohlik_orders_1W,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
79
- rohlik_sales_1D,False,False,False,False,True,False,False,False,False,False,False,False,False,False,False
80
- rohlik_sales_1W,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
81
- rossmann_1D,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
82
- rossmann_1W,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
83
- solar_1D,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
84
- solar_1W,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
85
- solar_with_weather_15T,False,False,False,False,False,False,False,False,True,True,False,False,False,False,False
86
- solar_with_weather_1H,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
87
- uci_air_quality_1D,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
88
- uci_air_quality_1H,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
89
- uk_covid_nation_1D/cumulative,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
90
- uk_covid_nation_1D/new,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
91
- uk_covid_nation_1W/cumulative,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
92
- uk_covid_nation_1W/new,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
93
- uk_covid_utla_1D/new,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
94
- uk_covid_utla_1W/cumulative,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
95
- us_consumption_1M,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
96
- us_consumption_1Q,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
97
- us_consumption_1Y,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
98
- walmart,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
99
- world_co2_emissions,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
100
- world_life_expectancy,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
101
- world_tourism,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
tables/pivot_WQL_leakage_imputed.csv DELETED
@@ -1,101 +0,0 @@
1
- Task name,Chronos-2,TiRex,TimesFM-2.5,Toto-1.0,TabPFN-TS,Moirai-2.0,Chronos-Bolt,Sundial-Base,Stat. Ensemble,AutoARIMA,AutoETS,AutoTheta,Seasonal Naive,Naive,Drift
2
- ETT_15T,False,False,False,False,False,True,False,False,False,False,False,False,False,False,False
3
- ETT_1D,False,False,False,False,False,True,False,False,False,False,False,False,False,False,False
4
- ETT_1H,False,False,False,False,False,True,False,False,False,False,False,False,False,False,False
5
- ETT_1W,False,False,False,False,False,True,False,False,False,False,False,False,False,False,False
6
- LOOP_SEATTLE_1D,False,False,False,False,False,True,False,False,False,False,False,False,False,False,False
7
- LOOP_SEATTLE_1H,False,False,False,False,False,True,False,False,False,False,False,False,False,False,False
8
- LOOP_SEATTLE_5T,False,False,False,False,False,True,False,False,False,False,False,False,False,False,False
9
- M_DENSE_1D,False,False,False,False,False,True,False,False,False,False,False,False,False,False,False
10
- M_DENSE_1H,False,False,False,False,False,True,False,False,False,False,False,False,False,False,False
11
- SZ_TAXI_15T,False,False,False,False,False,True,False,False,False,False,False,False,False,False,False
12
- SZ_TAXI_1H,False,False,False,False,False,True,False,False,False,False,False,False,False,False,False
13
- australian_tourism,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
14
- bizitobs_l2c_1H,False,False,False,False,False,True,False,False,False,False,False,False,False,False,False
15
- bizitobs_l2c_5T,False,False,False,False,False,True,False,False,False,False,False,False,False,False,False
16
- boomlet_1062,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
17
- boomlet_1209,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
18
- boomlet_1225,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
19
- boomlet_1230,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
20
- boomlet_1282,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
21
- boomlet_1487,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
22
- boomlet_1631,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
23
- boomlet_1676,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
24
- boomlet_1855,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
25
- boomlet_1975,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
26
- boomlet_2187,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
27
- boomlet_285,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
28
- boomlet_619,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
29
- boomlet_772,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
30
- boomlet_963,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
31
- ecdc_ili,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
32
- entsoe_15T,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
33
- entsoe_1H,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
34
- entsoe_30T,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
35
- epf_be,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
36
- epf_de,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
37
- epf_fr,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
38
- epf_np,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
39
- epf_pjm,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
40
- ercot_1D,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
41
- ercot_1H,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
42
- ercot_1M,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
43
- ercot_1W,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
44
- favorita_stores_1D,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
45
- favorita_stores_1M,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
46
- favorita_stores_1W,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
47
- favorita_transactions_1D,False,False,True,True,False,True,False,False,False,False,False,False,False,False,False
48
- favorita_transactions_1M,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
49
- favorita_transactions_1W,False,False,True,False,False,False,False,False,False,False,False,False,False,False,False
50
- fred_md_2025/cee,False,False,True,True,False,True,False,False,False,False,False,False,False,False,False
51
- fred_md_2025/macro,False,False,True,True,False,True,False,False,False,False,False,False,False,False,False
52
- fred_qd_2025/cee,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
53
- fred_qd_2025/macro,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
54
- gvar,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
55
- hermes,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
56
- hierarchical_sales_1D,False,False,False,False,False,True,False,False,False,False,False,False,False,False,False
57
- hierarchical_sales_1W,False,False,False,False,False,True,False,False,False,False,False,False,False,False,False
58
- hospital,False,False,False,False,False,True,False,False,False,False,False,False,False,False,False
59
- hospital_admissions_1D,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
60
- hospital_admissions_1W,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
61
- jena_weather_10T,False,False,False,False,False,True,False,False,False,False,False,False,False,False,False
62
- jena_weather_1D,False,False,False,False,False,True,False,False,False,False,False,False,False,False,False
63
- jena_weather_1H,False,False,False,False,False,True,False,False,False,False,False,False,False,False,False
64
- kdd_cup_2022_10T,False,True,True,True,False,True,False,True,False,False,False,False,False,False,False
65
- kdd_cup_2022_1D,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
66
- kdd_cup_2022_30T,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
67
- m5_1D,False,False,True,True,False,True,False,False,False,False,False,False,False,False,False
68
- m5_1M,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
69
- m5_1W,False,False,True,False,False,False,False,False,False,False,False,False,False,False,False
70
- proenfo_gfc12,False,False,True,True,False,True,False,False,False,False,False,False,False,False,False
71
- proenfo_gfc14,False,False,True,True,False,True,False,False,False,False,False,False,False,False,False
72
- proenfo_gfc17,False,False,True,True,False,True,False,False,False,False,False,False,False,False,False
73
- redset_15T,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
74
- redset_1H,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
75
- redset_5T,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
76
- restaurant,False,False,False,False,False,True,False,False,False,False,False,False,False,False,False
77
- rohlik_orders_1D,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
78
- rohlik_orders_1W,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
79
- rohlik_sales_1D,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
80
- rohlik_sales_1W,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
81
- rossmann_1D,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
82
- rossmann_1W,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
83
- solar_1D,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
84
- solar_1W,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
85
- solar_with_weather_15T,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
86
- solar_with_weather_1H,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
87
- uci_air_quality_1D,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
88
- uci_air_quality_1H,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
89
- uk_covid_nation_1D/cumulative,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
90
- uk_covid_nation_1D/new,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
91
- uk_covid_nation_1W/cumulative,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
92
- uk_covid_nation_1W/new,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
93
- uk_covid_utla_1D/new,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
94
- uk_covid_utla_1W/cumulative,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
95
- us_consumption_1M,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
96
- us_consumption_1Q,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
97
- us_consumption_1Y,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
98
- walmart,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
99
- world_co2_emissions,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
100
- world_life_expectancy,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False
101
- world_tourism,False,False,False,False,False,False,False,False,False,False,False,False,False,False,False