Spaces:
Sleeping
Sleeping
File size: 8,961 Bytes
47bae79 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 |
#!/usr/bin/env python3
"""
Complete LLM Testing Script
Supports Groq and local HuggingFace LLMs with proper LangChain integration.
"""
import os
import sys
from dotenv import load_dotenv
# LangChain & LangGraph imports
try:
from langchain_core.messages import SystemMessage, HumanMessage, AIMessage
from langchain_groq import ChatGroq
from langgraph.graph import START, StateGraph, MessagesState
from langgraph.prebuilt import ToolNode, tools_condition
print("β
LangChain imports successful")
except ImportError as e:
print(f"β Import error: {e}")
print("π‘ Install missing packages: pip install langchain-groq langgraph")
sys.exit(1)
load_dotenv()
class LocalHuggingFaceLLM:
"""Custom wrapper for local HuggingFace models"""
def __init__(self, model, tokenizer, device):
self.model = model
self.tokenizer = tokenizer
self.device = device
self.model.eval()
def invoke(self, messages):
"""Generate response from local model, return AIMessage"""
from langchain_core.messages import AIMessage
import torch
# Convert messages to text
if isinstance(messages, list):
text = ""
for msg in messages:
if hasattr(msg, 'content'):
if hasattr(msg, 'type'):
if msg.type == "system":
text += f"System: {msg.content}\n"
elif msg.type == "human":
text += f"Human: {msg.content}\n"
else:
text += f"{msg.content}\n"
else:
text += f"Human: {msg.content}\n"
else:
text += str(msg) + "\n"
text += "Assistant:"
else:
text = str(messages)
try:
inputs = self.tokenizer.encode(text, return_tensors="pt", max_length=512, truncation=True)
if self.device == "cuda" and torch.cuda.is_available():
inputs = inputs.to(self.device)
self.model = self.model.to(self.device)
outputs = self.model.generate(
inputs,
max_new_tokens=100,
do_sample=True,
temperature=0.7,
pad_token_id=self.tokenizer.eos_token_id,
attention_mask=torch.ones_like(inputs),
no_repeat_ngram_size=2,
early_stopping=True
)
response_text = self.tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True).strip()
return AIMessage(content=response_text if response_text else "I understand.")
except Exception as e:
return AIMessage(content=f"Error generating response: {str(e)}")
def create_local_huggingface_llm():
"""Initialize local HuggingFace model"""
try:
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
model_name = "microsoft/DialoGPT-small"
device = "cuda" if torch.cuda.is_available() else "cpu"
tokenizer = AutoTokenizer.from_pretrained(model_name, padding_side="left")
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16 if device == "cuda" else torch.float32)
return LocalHuggingFaceLLM(model, tokenizer, device)
except Exception as e:
print(f"β Failed to load local HuggingFace model: {e}")
return None
def create_minimal_graph(provider: str = "groq"):
"""Create a minimal graph for testing"""
try:
if provider == "groq":
if not os.getenv("GROQ_API_KEY"):
raise ValueError("GROQ_API_KEY not found")
llm = ChatGroq(model="qwen/qwen3-32b", temperature=0)
def assistant(state: MessagesState):
return {"messages": [llm.invoke(state["messages"])]}
builder = StateGraph(MessagesState)
builder.add_node("assistant", assistant)
builder.add_edge(START, "assistant")
return builder.compile()
elif provider == "huggingface_local":
llm = create_local_huggingface_llm()
if llm is None:
raise ValueError("Failed to create local HuggingFace model")
def assistant(state: MessagesState):
# Return AIMessage directly
return {"messages": [llm.invoke(state["messages"])]}
builder = StateGraph(MessagesState)
builder.add_node("assistant", assistant)
builder.add_edge(START, "assistant")
return builder.compile()
else:
raise ValueError(f"Unknown provider: {provider}")
except Exception as e:
print(f"β Failed to create minimal graph: {e}")
return None
def test_basic_llm_response(provider: str = "groq"):
"""Test basic LLM response"""
print(f"\nπ§ͺ Testing Basic LLM Response ({provider})")
try:
if provider == "groq":
if not os.getenv("GROQ_API_KEY"):
return {"status": "error", "error": "GROQ_API_KEY not found"}
llm = ChatGroq(model="qwen/qwen3-32b", temperature=0)
elif provider == "huggingface_local":
llm = create_local_huggingface_llm()
if llm is None:
return {"status": "error", "error": "Failed to create local HuggingFace model"}
else:
return {"status": "error", "error": f"Unknown provider: {provider}"}
test_message = "Hello! Please respond with 'LLM is working correctly'"
response = llm.invoke([HumanMessage(content=test_message)])
print(f"π₯ Response: {response.content[:200]}")
return {"status": "success", "provider": provider, "response": response.content}
except Exception as e:
return {"status": "error", "error": str(e)}
def test_llm_with_system_prompt(provider: str = "groq"):
"""Test LLM with system prompt"""
print(f"\nπ§ͺ Testing LLM with System Prompt ({provider})")
try:
if provider == "groq":
llm = ChatGroq(model="qwen/qwen3-32b", temperature=0)
elif provider == "huggingface_local":
llm = create_local_huggingface_llm()
if llm is None:
return {"status": "error", "error": "Failed to create local HuggingFace model"}
else:
return {"status": "error", "error": f"Unknown provider: {provider}"}
system_msg = SystemMessage(content="You are a helpful assistant. Answer briefly and clearly.")
user_msg = HumanMessage(content="What is 2+2? Just give me the number.")
response = llm.invoke([system_msg, user_msg])
print(f"π₯ Response: {response.content}")
return {"status": "success", "provider": provider, "response": response.content}
except Exception as e:
return {"status": "error", "error": str(e)}
def test_graph_workflow(provider: str = "groq"):
"""Test graph workflow"""
print(f"\nπ§ͺ Testing Graph Workflow ({provider})")
try:
graph = create_minimal_graph(provider)
if graph is None:
return {"status": "error", "error": "Failed to create graph"}
test_query = "What is 5 + 3? Just give me the answer."
result = graph.invoke({"messages": [HumanMessage(content=test_query)]})
if result and "messages" in result:
last_message = result["messages"][-1]
print(f"π₯ Final response: {last_message.content}")
return {"status": "success", "response": last_message.content, "message_count": len(result["messages"])}
else:
return {"status": "error", "error": "No valid response from graph"}
except Exception as e:
return {"status": "error", "error": str(e)}
def run_all_tests():
"""Run all LLM tests"""
results = {}
# Groq tests
results["groq_basic"] = test_basic_llm_response("groq")
results["groq_system_prompt"] = test_llm_with_system_prompt("groq")
results["groq_graph"] = test_graph_workflow("groq")
# HuggingFace local tests
results["huggingface_local_basic"] = test_basic_llm_response("huggingface_local")
results["huggingface_local_system_prompt"] = test_llm_with_system_prompt("huggingface_local")
results["huggingface_local_graph"] = test_graph_workflow("huggingface_local")
return results
if __name__ == "__main__":
test_results = run_all_tests()
print("\nπ Test Results:")
for k, v in test_results.items():
print(f"{k}: {v}")
|