basic_agent / agent.py
techy-ai
basic agent
47bae79
raw
history blame
17.4 kB
import os
from dotenv import load_dotenv
from typing import List, Dict, Any, Optional
import tempfile
import re
import json
import requests
from urllib.parse import urlparse
import pytesseract
from PIL import Image, ImageDraw, ImageFont, ImageEnhance, ImageFilter
import cmath
import pandas as pd
import uuid
import numpy as np
from code_interpreter import CodeInterpreter
import logging
interpreter_instance = CodeInterpreter()
from image_processing import *
"""Langraph"""
from langgraph.graph import START, StateGraph, MessagesState
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_community.document_loaders import WikipediaLoader
from langchain_community.document_loaders import ArxivLoader
from langgraph.prebuilt import ToolNode, tools_condition
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_groq import ChatGroq
from langchain_huggingface import (
ChatHuggingFace,
HuggingFaceEndpoint,
HuggingFaceEmbeddings,
)
from langchain_community.vectorstores import SupabaseVectorStore
from langchain_core.messages import SystemMessage, HumanMessage
from langchain_core.tools import tool
from langchain.tools.retriever import create_retriever_tool
from supabase.client import Client, create_client
load_dotenv()
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger("agent")
def tool_response(success: bool, data=None, error=None):
"""Standardized response format for tools."""
return {
"status": "success" if success else "error",
"data": data,
"error": error
}
from typing import Any
@tool
def multiply(a: Any, b: Any):
"""Multiply two numbers and return the product."""
logger.info("multiply called with a=%s, b=%s", a, b)
try:
a = float(a)
b = float(b)
result = a * b
return tool_response(True, result)
except Exception as e:
logger.error("multiply failed: %s", str(e))
return tool_response(False, error=f"Invalid input: {e}")
@tool
def add(a: Any, b: Any):
"""Add two numbers and return the sum."""
logger.info("add called with a=%s, b=%s", a, b)
try:
a = float(a)
b = float(b)
return tool_response(True, a + b)
except Exception as e:
logger.error("add failed: %s", str(e))
return tool_response(False, error=f"Invalid input: {e}")
@tool
def subtract(a: Any, b: Any):
"""Subtract b from a and return the result."""
logger.info("subtract called with a=%s, b=%s", a, b)
try:
a = float(a)
b = float(b)
return tool_response(True, a - b)
except Exception as e:
logger.error("subtract failed: %s", str(e))
return tool_response(False, error=f"Invalid input: {e}")
@tool
def divide(a: Any, b: Any):
"""Divide a by b and return the quotient."""
logger.info("divide called with a=%s, b=%s", a, b)
try:
a = float(a)
b = float(b)
if b == 0:
return tool_response(False, error="Division by zero")
return tool_response(True, a / b)
except Exception as e:
logger.error("divide failed: %s", str(e))
return tool_response(False, error=f"Invalid input: {e}")
@tool
def modulus(a: Any, b: Any):
"""Return the remainder of a divided by b."""
logger.info("modulus called with a=%s, b=%s", a, b)
try:
a = float(a)
b = float(b)
return tool_response(True, a % b)
except Exception as e:
logger.error("modulus failed: %s", str(e))
return tool_response(False, error=f"Invalid input: {e}")
@tool
def power(a: Any, b: Any):
"""Raise a to the power of b."""
logger.info("power called with a=%s, b=%s", a, b)
try:
a = float(a)
b = float(b)
return tool_response(True, a ** b)
except Exception as e:
logger.error("power failed: %s", str(e))
return tool_response(False, error=f"Invalid input: {e}")
@tool
def square_root(a: Any):
"""Return the square root of a number."""
logger.info("square_root called with a=%s", a)
try:
a = float(a)
if a < 0:
# use complex math if negative
return tool_response(True, str(cmath.sqrt(a)))
return tool_response(True, a ** 0.5)
except Exception as e:
logger.error("square_root failed: %s", str(e))
return tool_response(False, error=f"Invalid input: {e}")
# =========================
# 📂 File Tools
# =========================
@tool
def save_and_read_file(filename: str, content: str):
"""Save content to a file and return the content back."""
logger.info("save_and_read_file called with filename=%s", filename)
try:
with open(filename, "w", encoding="utf-8") as f:
f.write(content)
with open(filename, "r", encoding="utf-8") as f:
result = f.read()
return tool_response(True, result)
except Exception as e:
logger.error("save_and_read_file failed: %s", str(e))
return tool_response(False, error=f"File error: {e}")
@tool
def download_file_from_url(url: str):
"""Download a file from a URL and return its local path."""
logger.info("download_file_from_url called with url=%s", url)
try:
if url.startswith("file://"):
raise ValueError("Local file:// URLs not allowed")
response = requests.get(url, timeout=10)
response.raise_for_status()
filename = os.path.basename(urlparse(url).path) or f"download_{uuid.uuid4()}"
with open(filename, "wb") as f:
f.write(response.content)
return tool_response(True, filename)
except Exception as e:
logger.error("download_file_from_url failed: %s", str(e))
return tool_response(False, error=f"Download error: {e}")
# =========================
# 🖼️ Image Tools
# =========================
@tool
def extract_text_from_image(image_path: str):
"""Extract text from an image using OCR."""
logger.info("extract_text_from_image called with image_path=%s", image_path)
try:
text = pytesseract.image_to_string(Image.open(image_path))
return tool_response(True, text.strip())
except Exception as e:
logger.error("extract_text_from_image failed: %s", str(e))
return tool_response(False, error=f"OCR error: {e}")
@tool
def analyze_image(image_path: str):
"""Return basic analysis (size, mode) of an image."""
logger.info("analyze_image called with image_path=%s", image_path)
try:
with Image.open(image_path) as img:
data = {"format": img.format, "mode": img.mode, "size": img.size}
return tool_response(True, data)
except Exception as e:
logger.error("analyze_image failed: %s", str(e))
return tool_response(False, error=f"Image analysis error: {e}")
@tool
def transform_image(image_path: str, operation: str):
"""Apply a simple transform (grayscale, blur, sharpen)."""
logger.info("transform_image called with image_path=%s operation=%s", image_path, operation)
try:
img = Image.open(image_path)
if operation == "grayscale":
img = img.convert("L")
elif operation == "blur":
img = img.filter(ImageFilter.BLUR)
elif operation == "sharpen":
img = img.filter(ImageFilter.SHARPEN)
else:
raise ValueError(f"Unsupported operation: {operation}")
output_path = f"transformed_{uuid.uuid4()}.png"
img.save(output_path)
return tool_response(True, output_path)
except Exception as e:
logger.error("transform_image failed: %s", str(e))
return tool_response(False, error=f"Transform error: {e}")
@tool
def draw_on_image(image_path: str, text: str):
"""Draw text on an image."""
logger.info("draw_on_image called with image_path=%s text=%s", image_path, text)
try:
img = Image.open(image_path)
draw = ImageDraw.Draw(img)
draw.text((10, 10), text, fill="black")
output_path = f"drawn_{uuid.uuid4()}.png"
img.save(output_path)
return tool_response(True, output_path)
except Exception as e:
logger.error("draw_on_image failed: %s", str(e))
return tool_response(False, error=f"Draw error: {e}")
@tool
def generate_simple_image(text: str):
"""Generate a simple image with text."""
logger.info("generate_simple_image called with text=%s", text)
try:
img = Image.new("RGB", (200, 100), color="white")
draw = ImageDraw.Draw(img)
draw.text((10, 40), text, fill="black")
output_path = f"generated_{uuid.uuid4()}.png"
img.save(output_path)
return tool_response(True, output_path)
except Exception as e:
logger.error("generate_simple_image failed: %s", str(e))
return tool_response(False, error=f"Image generation error: {e}")
@tool
def combine_images(image1_path: str, image2_path: str):
"""Combine two images side by side."""
logger.info("combine_images called with %s and %s", image1_path, image2_path)
try:
img1 = Image.open(image1_path)
img2 = Image.open(image2_path)
combined = Image.new("RGB", (img1.width + img2.width, max(img1.height, img2.height)))
combined.paste(img1, (0, 0))
combined.paste(img2, (img1.width, 0))
output_path = f"combined_{uuid.uuid4()}.png"
combined.save(output_path)
return tool_response(True, output_path)
except Exception as e:
logger.error("combine_images failed: %s", str(e))
return tool_response(False, error=f"Combine error: {e}")
# =========================
# 📊 Data Tools
# =========================
@tool
def analyze_csv_file(file_path: str):
"""Analyze a CSV file and return basic info."""
logger.info("analyze_csv_file called with file_path=%s", file_path)
try:
df = pd.read_csv(file_path)
summary = {"shape": df.shape, "columns": df.columns.tolist(), "head": df.head(3).to_dict()}
return tool_response(True, summary)
except Exception as e:
logger.error("analyze_csv_file failed: %s", str(e))
return tool_response(False, error=f"CSV analysis error: {e}")
@tool
def analyze_excel_file(file_path: str):
"""Analyze an Excel file and return basic info."""
logger.info("analyze_excel_file called with file_path=%s", file_path)
try:
df = pd.read_excel(file_path)
summary = {"shape": df.shape, "columns": df.columns.tolist(), "head": df.head(3).to_dict()}
return tool_response(True, summary)
except Exception as e:
logger.error("analyze_excel_file failed: %s", str(e))
return tool_response(False, error=f"Excel analysis error: {e}")
# =========================
# 💻 Code Tool
# =========================
@tool
def execute_code_multilang(code: str, language: str = "python"):
"""Execute code in multiple languages using CodeInterpreter."""
logger.info("execute_code_multilang called with language=%s", language)
try:
result = interpreter_instance.execute_code(code, language)
return tool_response(True, result)
except Exception as e:
logger.error("execute_code_multilang failed: %s", str(e))
return tool_response(False, error=f"Code execution error: {e}")
# =========================
# 🌍 Search Tools
# =========================
@tool
def web_search(query: str, max_results: int = 3):
"""Perform a web search using TavilySearchResults."""
logger.info("web_search called with query=%s", query)
try:
tavily = TavilySearchResults(max_results=max_results)
results = tavily.invoke(query)
return tool_response(True, results)
except Exception as e:
logger.error("web_search failed: %s", str(e))
return tool_response(False, error=f"Web search error: {e}")
@tool
def wiki_search(query: str):
"""Search Wikipedia and return documents."""
logger.info("wiki_search called with query=%s", query)
try:
loader = WikipediaLoader(query=query, load_max_docs=3)
docs = loader.load()
results = [doc.page_content for doc in docs]
return tool_response(True, results)
except Exception as e:
logger.error("wiki_search failed: %s", str(e))
return tool_response(False, error=f"Wikipedia error: {e}")
@tool
def arxiv_search(query: str):
"""Search Arxiv and return documents."""
logger.info("arxiv_search called with query=%s", query)
try:
loader = ArxivLoader(query=query, load_max_docs=3)
docs = loader.load()
results = [doc.page_content for doc in docs]
return tool_response(True, results)
except Exception as e:
logger.error("arxiv_search failed: %s", str(e))
return tool_response(False, error=f"Arxiv error: {e}")
if __name__ == "__main__":
logger.info("=== Running Tool Tests ===")
# =========================
# 🌍 Tested for tools
# =========================
# 🌍 Search Tools
# print("\n--- web_search ---")
# print(web_search.invoke({"query": "latest AI research", "max_results": 2}))
# print("\n--- wiki_search ---")
# print(wiki_search.invoke({"query": "LangChain"}))
# print("\n--- arxiv_search ---")
# print(arxiv_search.invoke({"query": "transformers"}))
# 💻 Code Execution
# print("\n--- execute_code_multilang ---")
# print(execute_code_multilang.invoke({"code": "print(2+3)", "language": "python"}))
# load the system prompt from the file
with open("system_prompt.txt", "r", encoding="utf-8") as f:
system_prompt = f.read()
print(system_prompt)
# System message
sys_msg = SystemMessage(content=system_prompt)
# build a retriever
embeddings = HuggingFaceEmbeddings(
model_name="sentence-transformers/all-mpnet-base-v2"
) # dim=768
from dotenv import load_dotenv
load_dotenv()
supabase_url = os.environ.get("SUPABASE_URL")
supabase_key = os.environ.get("SUPABASE_KEY")
supabase: Client = create_client(
supabase_url, supabase_key
)
vector_store = SupabaseVectorStore(
client=supabase,
embedding=embeddings,
table_name="documents2",
query_name="match_documents_2",
)
create_retriever_tool = create_retriever_tool(
retriever=vector_store.as_retriever(),
name="Question Search",
description="A tool to retrieve similar questions from a vector store.",
)
tools = [
web_search,
wiki_search,
arxiv_search,
multiply,
add,
subtract,
divide,
modulus,
power,
square_root,
save_and_read_file,
download_file_from_url,
extract_text_from_image,
analyze_csv_file,
analyze_excel_file,
execute_code_multilang,
analyze_image,
transform_image,
draw_on_image,
generate_simple_image,
combine_images,
]
# Build graph function
def build_graph(provider: str = "groq"):
"""Build the graph"""
# Load environment variables from .env file
if provider == "groq":
# Groq https://console.groq.com/docs/models
llm = ChatGroq(model="qwen/qwen3-32b", temperature=0)
elif provider == "huggingface":
# TODO: Add huggingface endpoint
llm = ChatHuggingFace(
llm=HuggingFaceEndpoint(
repo_id="TinyLlama/TinyLlama-1.1B-Chat-v1.0",
task="text-generation", # for chat‐style use “text-generation”
max_new_tokens=1024,
do_sample=False,
repetition_penalty=1.03,
temperature=0,
),
verbose=True,
)
else:
raise ValueError("Invalid provider. Choose 'groq' or 'huggingface'.")
# Bind tools to LLM
llm_with_tools = llm.bind_tools(tools)
# Node
def assistant(state: MessagesState):
"""Assistant node"""
return {"messages": [llm_with_tools.invoke(state["messages"])]}
def retriever(state: MessagesState):
"""Retriever node"""
similar_question = vector_store.similarity_search(state["messages"][0].content)
if similar_question: # Check if the list is not empty
example_msg = HumanMessage(
content=f"Here I provide a similar question and answer for reference: \n\n{similar_question[0].page_content}",
)
return {"messages": [sys_msg] + state["messages"] + [example_msg]}
else:
# Handle the case when no similar questions are found
return {"messages": [sys_msg] + state["messages"]}
builder = StateGraph(MessagesState)
builder.add_node("retriever", retriever)
builder.add_node("assistant", assistant)
builder.add_node("tools", ToolNode(tools))
builder.add_edge(START, "retriever")
builder.add_edge("retriever", "assistant")
builder.add_conditional_edges(
"assistant",
tools_condition,
)
builder.add_edge("tools", "assistant")
# Compile graph
return builder.compile()
# test
if __name__ == "__main__":
question = "When was a picture of St. Thomas Aquinas first added to the Wikipedia page on the Principle of double effect?"
graph = build_graph(provider="groq")
messages = [HumanMessage(content=question)]
messages = graph.invoke({"messages": messages})
for m in messages["messages"]:
m.pretty_print()