Speaking Clearly: A Simplified Whisper-Based Codec for Low-Bitrate Speech Coding
Paper
β’
2510.20504
β’
Published
A semantic-first speech codec that achieves superior performance through architectural simplification rather than complex supervision.
| Model | Bitrate | WER β | PESQ-NB β | PESQ-WB β | STOI β | SIM β | UTMOS β |
|---|---|---|---|---|---|---|---|
| XCodec2.0 | 0.8 kbps | 2.61 | 3.04 | 2.43 | 0.92 | 0.82 | 4.13 |
| XY-Tokenizer | 1.0 kbps | 2.46 | 3.00 | 2.41 | 0.91 | 0.84 | 3.98 |
| SimWhisper-Codec | 1.1 kbps | 2.75 | 3.29 | 2.72 | 0.93 | 0.83 | 4.00 |
Evaluated on LibriSpeech test-clean
# Clone repository
git clone https://github.com/ZhangXinWhut/SimWhisper-Codec.git && cd SimWhisper-Codec
# Create and activate conda environment
conda create -n swcodec python=3.10 -y && conda activate swcodec
# Install dependencies
pip install -r requirements.txt
| Model Name | Hugging Face | Training Data |
|---|---|---|
| SimWhisper-Codec | π€ | LibriSpeech |
You need to download the SimWhisper-Codec model weights. You can find the weights in the SimWhisper-Codec Hugging Face repository.
mkdir -p ./weights && huggingface-cli download xxx123456/SimWhisper_Codec SimWhisperCodec.pt --local-dir ./weights/
python inference.py --input_dir /path/to/LibriSpeech/test-clean
The reconstructed audio files will be available in the output_wavs/ directory.
Our codebase builds upon the XY-Tokenizer. We thank the authors for their excellent work.
If you find this work useful in your research, please cite our paper:
@misc{zhang2025speakingclearlysimplifiedwhisperbased,
title={Speaking Clearly: A Simplified Whisper-Based Codec for Low-Bitrate Speech Coding},
author={Xin Zhang and Lin Li and Xiangni Lu and Jianquan Liu and Kong Aik Lee},
year={2025},
eprint={2510.20504},
archivePrefix={arXiv},
primaryClass={cs.SD},
url={https://arxiv.org/abs/2510.20504},
}