| ## 🛠️ Requirements | |
| ### Environment | |
| - **Linux system**, | |
| - **Python** 3.8+, recommended 3.10 | |
| - **PyTorch** 2.0 or higher, recommended 2.1.0 | |
| - **CUDA** 11.7 or higher, recommended 12.1 | |
| ### Environment Installation | |
| It is recommended to use Miniconda for installation. The following commands will create a virtual environment named `stnr` and install PyTorch. In the following installation steps, the default installed CUDA version is 12.1. If your CUDA version is not 12.1, please modify it according to the actual situation. | |
| ```bash | |
| # Create conda environment | |
| conda create -n stnr python=3.8 -y | |
| conda activate stnr | |
| # Install PyTorch | |
| pip install -r requirements.txt | |
| ``` | |
| ## 📁 Dataset Preparation | |
| We evaluate our method on five remote sensing change detection datasets: **WHU-CD**, **LEVIR-CD**, **SYSU-CD**. | |
| | Dataset | Link | | |
| |---------|------| | |
| | WHU-CD | [Download](https://aistudio.baidu.com/datasetdetail/251669) | | |
| | LEVIR-CD | [Download](https://opendatalab.org.cn/OpenDataLab/LEVIR-CD) | | |
| | SYSU-CD | [Download](https://mail2sysueducn-my.sharepoint.com/personal/liumx23_mail2_sysu_edu_cn/_layouts/15/onedrive.aspx?id=%2Fpersonal%2Fliumx23%5Fmail2%5Fsysu%5Fedu%5Fcn%2FDocuments%2FSYSU%2DCD&ga=1) | | |
| ### Example of Training on LEVIR-CD Dataset | |
| ```bash | |
| python main.py --file_root LEVIR --max_steps 80000 --model_type small --batch_size 16 --lr 2e-4 --gpu_id 0 | |
| ``` | |
| ### Example of Training on LEVIR-CD Dataset | |
| ```bash | |
| python eval.py --file_root LEVIR --max_steps 80000 --model_type small --batch_size 16 --lr 2e-4 --gpu_id 0 | |
| ``` | |
| ## 📂 DATA Structure | |
| ``` | |
| ├─Train | |
| ├─A jpg/png | |
| ├─B jpg/png | |
| └─label jpg/png | |
| ├─Val | |
| ├─A | |
| ├─B | |
| └─label | |
| ├─Test | |
| ├─A | |
| ├─B | |
| └─label | |
| ``` | |
| ## 🙏 Acknowledgement | |
| We sincerely thank the following works for their contributions: | |
| - [ChangeViT](https://arxiv.org/pdf/2406.12847) – A state-of-the-art method for remote sensing change detection that inspired and influenced parts of this work. | |